摘要
基于人工神经网络对图像标签分类,为简化后续数据处理,先用Normalized Cut将图像分割为超像素,提取特征向量,通过输入训练样本集,对网络进行训练,在最小均方误差意义下得到网络参数,最后在Matlab的仿真实验中基于不同隐藏层节点,使用BP神经网络模型对图像超像素进行分类。
This paper describes the classification of image labeling based on artificial neural network .For simplifying the data processing , obtaining the super-pixel as a result of image segmentation , we took the extracted feature vectors as input for network , obtained the parameters of network in the sense of minimum mean square error after training the network with training samples .At last, in the simulation experiments of Matlab , we classified the super-pixel of image based on BP neural network model for all hidden neurons .
出处
《计算机与现代化》
2013年第12期98-101,105,共5页
Computer and Modernization
基金
高等学校博士学科点专项科研基金资助项目(20120185110030)
国家教育部回国人员科研启动基金和四川省合作项目(2013HH0005)
关键词
超像素
神经网络
分类
super-pixel
neural networks
classifier