期刊文献+

空间趋向曲线引导的网格曲面拼接 被引量:1

Spatial-trend-curve guided mesh stitching
下载PDF
导出
摘要 为了解决三维造型中的曲面拼接问题,提出基于空间趋向曲线的网格曲面拼接方法.该方法有效地结合边界曲面的延伸信息,简单高效地构造光滑的过渡曲面;通过对两待拼接曲面边界点参数归一化,由参数聚类,建立曲面边界之间的匹配点对关系;在每对匹配点对之间构建由Bézier表征的空间趋向曲线,使空间曲线在对应点对上与待拼接曲面保持二阶连续;对空间趋向曲线族进行离散化和三角化,得到光滑的过渡曲面.结果表明,与其他传统方法比较,该方法在曲面拼接应用中具有高效可靠的优势. To solve surface stitching problem in 3D modeling, we proposed a method of spatial-trend-curate based mesh surface stitching. The method effectively combined potential extension information of bounda- ry to simply and efficiently construct smooth transitional surface, the corresponding-point-pairs between two boundaries of the separated surface were matched by parametric normalization and clustering~ a spa- tial-trend-curve represented by B^zier-curve with second-order continuity was generated on each pair of cor- responding points~ a smooth transitional surface was finally obtained by sampling and skinning the spatial- trend-curves. Results shows that our method have the advantage of high efficiency and reliability compared with other traditional methods.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2013年第11期2003-2009,2019,共8页 Journal of Zhejiang University:Engineering Science
基金 国家自然科学基金资助项目(60903145) 教育部博士点基金资助项目(20100101110025) 浙江省自然科学基金资助项目(LY13F020003) 中央高校基本科研业务费专项资金资助项目(2012QNA4003)
关键词 空间趋向曲线 网格曲面拼接 二阶连续 聚类 spatial-trend-curve surface stitching second-order continuity clustering
  • 相关文献

参考文献13

  • 1LIN J, JIN X, WANG C C L. Fusion of disconnected mesh components with branching shapes [J]. The Visual Computer, 2010, 26(6/8): 1017-1025.
  • 2LIN J, JIN X, WANG C C L, et al. Mesh composition on models with arbitrary boundary topology[J]. IEEE Transactions on Visualization and Computer Graphics, 2008, 14(3): 653-665.
  • 3JIN X, LIN J, WANG C C L, et al. Mesh fusion using functional blending on topologically incompatible sections [J]. The Visual Computer, 2006, 22(4): 266-275.
  • 4ZHU L, LI S, WANG G. Accurate stitching for polygonal surfaces [J]. International Journal of CAD/CAM, 2009, 9(1): 7177.
  • 5HASSNER T, ZELNIK-MANOR L, LEIFMAN G, et al. Minimal-cut model composition [C]∥ Proceedings of International Conference on Shape Modeling and Applications. Cambridge MA: IEEE, 2005: 72-81.
  • 6KRAEVOY V, SHEFFER A. Template-based mesh completion [C]∥ Proceedings of the third Eurographics symposium on Geometry processing. Vienna, Austria: Eurographics Association, 2005: 13-22.
  • 7NGUYEN M X, YUAN X, CHEN B. Geometry completion and detail generation by texture synthesis[J]. The Visual Computer, 2005, 21(8-10):669-678.
  • 8KUMAR A, SHIH A, ITO Y, et al. A Hole-filling algorithm using non-uniform rational B-splines [C]∥ Proceedings of the 16th International Meshing Roundtable. Seattle, Washington, USA: Springer Berlin Heidelberg, 2008: 169-182.
  • 9SZILVASI-NAGY M. Filling holes with B-spline surfaces [J]. Journal for Geometry and Graphics, 2002, 6(1): 83-98.
  • 10SORKINE O, COHEN-OR D. Least-squares Meshes[C]∥ Proceedings of Shape Modeling Application, 2004. Genova, Italy: IEEE, 2004: 191-199.

同被引文献11

  • 1程进三,高小山.构造两个曲面的拼接曲面[J].工程图学学报,2005,26(1):39-44. 被引量:14
  • 2吴文俊,王定康.CAGD中代数曲面拟合问题[J].数学的实践与认识,1994,24(3):26-31. 被引量:19
  • 3WARREN J. Blending algebraic surfaces[J]. ACM Trans- actions on Graphics, 1989,8(4) : 263-278.
  • 4THOMAS W S. Technique for cubic algebraic surfaces:Part two [J]. Computer Graphics and Application, 1990,10 (5) : 12-21.
  • 5ERICH H. Blending an implicit with a parametric surface[J]. Computer Aided Geometric Design, 1995,12(5 ) : 825-835.
  • 6ERICH H. Parametric Gn blending of curves and surfaces[ J 1. The Visual Computer, 2001,17( 1 ) : 1-13.
  • 7WU T, LEI N, CHENG J. Wen-tsun Formulae for the blend-ing of pipe surfaces [J]. Northeast Math, 2001,17 (4) :383- 386.
  • 8WU T. On blending of several quadratic algebraic surfaces[J]. Computer Aided Geometric Design, 2000,17 (8) : 759-766.
  • 9李耀辉.基于结式方法的代数曲面拼接[J].计算机工程与应用,2008,44(29):17-20. 被引量:7
  • 10李耀辉,宣兆成,武志峰,孙原.二次代数曲面拼接中的光顺处理[J].计算机应用,2014,34(7):2054-2057. 被引量:3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部