期刊文献+

Giant in-plane optical anisotropy of a-plane ZnO on r-plane sapphire

Giant in-plane optical anisotropy of a-plane ZnO on r-plane sapphire
原文传递
导出
摘要 We have measured the in-plane optical anisotropy (IPOA) of (1120) ZnO (a-plane) on (10]-2) sapphire (r-plane) by reflectance difference spectroscopy (RDS) at room temperature. Giant IPOA has been observed be- tween the light polarized direction parallel and perpendicular to the c axis of ZnO, since the symmetry of a-plane is C2v. A sharp resonance has been observed near the fundamental band gap, which is induced by the polarization- depend band gap shift. The sharp line shape is attributed to the exciton transition. The spectra fitting and differential spectra indicate the polarization-depend band energies. The giant IPOA is possible enhanced by anisotropy strain along and perpendicular to the c axis in the a-plane. We have measured the in-plane optical anisotropy (IPOA) of (1120) ZnO (a-plane) on (10]-2) sapphire (r-plane) by reflectance difference spectroscopy (RDS) at room temperature. Giant IPOA has been observed be- tween the light polarized direction parallel and perpendicular to the c axis of ZnO, since the symmetry of a-plane is C2v. A sharp resonance has been observed near the fundamental band gap, which is induced by the polarization- depend band gap shift. The sharp line shape is attributed to the exciton transition. The spectra fitting and differential spectra indicate the polarization-depend band energies. The giant IPOA is possible enhanced by anisotropy strain along and perpendicular to the c axis in the a-plane.
出处 《Journal of Semiconductors》 EI CAS CSCD 2013年第12期17-20,共4页 半导体学报(英文版)
基金 Project supported by the State Key Development Program for Basic Research of China(Nos.2013CB619306,2012CB921304) the National Natural Science Foundation of China(No.60990313) the National High Technology Research and Development Program of China(No.2011AA03A101)
关键词 ZNO in-plane optical anisotropy reflectance difference spectroscopy ZnO in-plane optical anisotropy reflectance difference spectroscopy
  • 相关文献

参考文献16

  • 1Look D C. Recent advances in ZnO materials and devices. Mater Sci Eng B, 2001, 80:383.
  • 2Chen Y, Bagnall D M, Koh H, et al. Plasma assisted molecular beam epitaxy of ZnO on c-plane sapphire: growth and character- ization. J Appl Phys, 1998, 84:3192.
  • 3Look D C, Reynolds D C, Hemsky J W. et al. Production and annealing of electron irradiation damage in ZnO. Appl Phys Lett, 1999, 75:811.
  • 4Gil B, Lefebvre P, Bretagnnn T, et al. Spin-exchange interaction in ZnO-based quantum wells. Phys Rev B, 2006, 74:153302.
  • 5Tabares G, Hierro A, Vinter B, et al. Polarization-sensitive Schottky photodiodes based on a-plane ZnO/ZnMgO multiple quantum-wells. Appl Phys Lett, 2011, 99:071108.
  • 6Gorla C R, Emanetoglu N W, Liang S, et al. Structural, opti- cal, and surface acoustic wave properties of epitaxial ZnO films grown on (01i-2) sapphire by metalorganic chemical vapor depo- sition. J Appl Phys, 1999, 85:2595.
  • 7Chauveau J M, Vennegues P, Laugt M, et al. Interface structure and anisotropic strain relaxation ofnonpolar wurtzite (1120) and (101-0) orientations: ZnO epilayers grown on sapphire. J Appl Phys, 2008, 104:073535.
  • 8Cobet M, Cobet C, Wagner M R, et al. Polariton effects in the di- electric function ofZnO excitons obtained by ellipsometry. Appl Phys Lett, 2010, 96:031904.
  • 9Aspnes D E, Harbison J P, Studna A A, et al. Application of reflectance difference spectroscopy to molecular-beam epitaxy growth of GaAs and AlAs. J Vac Sci Technol A, 1988, 6:1327.
  • 10Macdonald B F, Law J S, Cole R J, et al. Azimuth-dependent reflection anisotropy spectroscopy. J Appl Phys, 2003, 93:3320.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部