期刊文献+

基于粒子滤波的on-line boosting目标跟踪算法 被引量:1

Object Tracking Algorithm of On-line Boosting Based on Particle Filter
下载PDF
导出
摘要 基于Haar-like特征的on-line boosting跟踪算法(HBT)把目标跟踪看作是目标与背景的二分类问题,通过在候选区域搜索最大分类置信度的方法得到目标新的位置。但在获取最大置信度时选用的是区域穷举搜索法,当目标过大或者运动速度过快时,很难确保系统的实时性,且易造成跟踪丢失。本文将粒子滤波算法引入HBT目标跟踪框架中,通过建立目标运动模型,并把HBT目标分类置信度与粒子滤波的观测模型结合起来,提出了基于粒子滤波的on-line boosting目标跟踪算法(PFHBT)。与HBT算法相比,本文算法不仅加快了计算速度,而且很好地解决了目标速度过快造成跟踪丢失的问题,保证了系统的实时性和鲁棒性。 Object tracking is regarded as a classification between object and background in on-line boost-ing tracking algorithm (HBT) based on the Haar-like feature. The new position of the object is obtained by searching the maximum classification confidence in the candidate region. However, the exhaustive search procedure makes it difficult to ensure real-time property and result in tracking lost easily when the size of the object is too big or the speed of the object is too fast to get the maximum confidence in the candidate regions. In this paper,the particle filter is introduced into the HBT object tracking framework and an algorithm of on-line boosting object tracking based on particle filter (PFHBT) is proposed:the motion of the object is modeled and the object classification confidence is regarded as the observation of particle filter. Experimental results show that the algorithm not only improves the computing speed sig-nificantly, but also solves the problem of tracking lost caused by object fast moving effectively.
出处 《广西师范大学学报(自然科学版)》 CAS 北大核心 2013年第3期100-105,共6页 Journal of Guangxi Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(61102155,61272237,61272236) 湖北省高等学校优秀中青年科技创新团队计划项目(T201002) 湖北省教育厅青年科学基金资助项目(Q20111205)
关键词 目标跟踪ion—line BOOSTING 粒子滤波 置信度 运动模型 object tracking on-line boosting particle filter confidence motion model
  • 相关文献

参考文献14

  • 1YII.MAZ A ,JAVED (),SHAH M. Object tracking =a survey[J]. ACM Computing Surveys ,2006.38(4) =1-45.
  • 2COI.LINS R T,LIU Yan-xi,LEORDEANU M. Online selection of discriminative tracking features [J]. IEEE Trans- actions on Pattern Analysis and Machine Intelligence ,2005,27(10):1631-1643.
  • 3ANDRILUKA M,ROTH S,SCHIELE B. People-tracking-by detection and people-detection-by-tracking[C]//Pro-ceedings of 2008 IEEE Conference on Computer Vision and Pattern Recognition. Washington DC:IEEE Computer Society, 2008 : 1-8.
  • 4SAFFARI A,LEISTNER C,SANTNER J,et al. On-line random forest[C]//Proceedings of IEEE 12th International Conference on Computer Vision Workshops. Washington DC:IEEE Computer Society,2009: 1393-1400.
  • 5BREITENSTEIN M D,REICHLIN F,LEIBE B,et al. Robust tracking by detection using a detector confidence parti- cle filter[C]//Proceedings of IEEE 12th International Conference on Computer Vision. Washington DC:IEEE Com- puter Society, 2009 : 1515-1522.
  • 6BABENKO B,YANG Ming-hsua'n,BELONGIE S. Robust object tracking with on-line multiple instance learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011,33(8):1619-1632.
  • 7KALAL Z,MIKOLAJCZYK K,MATAS J. Tracking-learning-detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012,34(7) : 1409-1422.
  • 8BRANSON S,PERONA P,BELONGIE S. Strong supervison from weak annotation:interactive training of deformable part models [C]//Proceedings of 2011 IEEE International Conference on Computer Vision. Washington DC: IEEE Computer Society, 2011 : 1832-1839.
  • 9AVIDAN S. Support vector tracking [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004,26 (8) : 1064-1072.
  • 10GRABNER H ,BISCHOF H. On-line boosting and vision[C]//Proceedings of 2006 IEEE Computer Society Confer- ence on Computer Vision and Pattern Recognition. Washington DC~IEEE Computer Society,2006~260-267.

同被引文献25

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部