期刊文献+

基于空域划分的超视距空战态势威胁评估 被引量:18

Modeling air combat situation assessment based on combat area division
下载PDF
导出
摘要 编队超视距空战(BVR,Beyond Visual Range)已成为现代空战的主要模式.在空战优势区域与劣势区域判断的基础上对整个空域进行划分,并给出4种特定空域态势.从空中态势和编队作战能力两方面对空战态势进行分析.使用主成分分析法选取输入变量分析编队作战能力,降低评估过程中收集数据的复杂度.应用遗传神经网络对影响BVR各因素进行效能评估,将遗传算法(GA,Genetic Algorithms)与多层前馈(BP,Back Propagation)网络结合,利用GA的全局搜索优化BP网络的结构参数,有效克服BP算法的局部收敛等问题.结果表明:该模型能在综合分析空战各指标后给出红蓝双发的态势评估指标,该模型可有效减少评估中的人为因素,使评估结果更为客观可信. The beyond visual range(BVR) air combat has become one of the most important air modes of modern air combat.The whole airspace division was made base on advantages and disadvantages of regional area.Four specific airspace situations were put forward.A new model was set up combined situation assessment model and formation combat capacity model.Using principal component analysis(PCA) to select input variables of formation combat capacity model,which can reduce the complexity of collecting data.Combined neural network was used for effectiveness evaluation of BVR.Combine genetic algorithms(GA) with back propagation(BP) neural network,using GA's global to search optimized BP network structure parameters,overcome the local convergence and other issues of BP algorithm effectively.The result shows that the model can limit the artificial factors,making the solution more objective and creditable.
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2013年第10期1309-1313,共5页 Journal of Beijing University of Aeronautics and Astronautics
基金 装备预先研究计划项目(51310010504)
关键词 超视距空战 优势区域 空域划分 态势评估 遗传神经网络 编队协同空战 beyond visual range(BVR) air combat advantage region combat area division situation assessment GA-BP neural network cooperative combat of airplane formation
  • 相关文献

参考文献16

  • 1Sivazlian B D. Aircraft sortie effectiveness model[R]. AD?A211594 ,1989.
  • 2康崇禄.国防系统分析方法[M].北京:国防工业出版社,2003..
  • 3曲东才.超视距空空导弹与超视距空战[J].中国航天,1999(8):23-27. 被引量:14
  • 4Tom Ring. US airborne command and control system[Jl. World Air Power, 1999 (36) :40-57.
  • 5Paddon H G. Maneuvering target simulation for testing the termi?nal guidance of air-to-air missiles[R]. ADA039757 /OSL, 1977.
  • 6Austin F ,Lewis M. Automated maneuvering decision for air-to-air combat] R]. AIAA-87 -2393,1987.
  • 7Hague D S. Multiple-tactical aircraft combat performance evalua?tion system[R]. AIAA-80-0189, 1980.
  • 8Coleman N, Papanagopoulos G. Advanced mine-to-target assign?ment algorithms and simulation[R]. AIAA-99-3993 ,1999.
  • 9耿延洛,姜长生,李伟浩.MULTI-FIGHTER COORDINATED MULTI-TARGET ATTACK SYSTEM[J].Transactions of Nanjing University of Aeronautics and Astronautics,2004,21(1):18-23. 被引量:7
  • 10李林森,佟明安.协同多目标攻击空战决策及其神经网络实现[J].航空学报,1999,20(4):309-312. 被引量:53

二级参考文献18

共引文献444

同被引文献150

引证文献18

二级引证文献151

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部