期刊文献+

基于神经网络的数据融合算法在管道缺陷损伤识别上的应用 被引量:3

Based on Neural Network Data Fusion Algorithm Defects in the Pipeline Damage Identification on the Application
下载PDF
导出
摘要 本文研究了基于BP神经网络的多传感器数据融合算法,并对BP算法进行改进,利用D-S证据理论进行分析,针对多传感器检测数据的不确定性,提出了神经网络和D-S证据理论相结合的数据融合模型及融合算法应用于输油管道检测系统,通过对他们进行检测、关联、相关、估计和综合等多方面、多级别的处理,进而得到被检测状态的准确评估。它可以克服单一管道检测技术的不足,融合多种检测结果以提高检测精度。 This paper studies the characteristics of BP neural network and studied the BP neural network based data fusion method On this basis, this paper briefly introduces the basic concepts of D-S evidence theory, The article proposed a fusion integration algorithm combination of neural networks and D-S evidence theory data for multi-sensor data for the uncertainty .The theory is analyzed through cases, the combination of the neural network and D-S evidence theory data fusion algorithm is applied to pipeline inspection system o Finally, the combination of the neural network and D-S evidence theory data fusion algorithm is applied to pipeline inspection system. Through their detection, association, correlation, estimation and other aspects of comprehensive, multi-level processing, then get an accurate assessment of the state of being detected o It can overcome the lack of a single pipeline inspection technology, the integration of a variety of test results in order to improve detection accuracy.
出处 《全面腐蚀控制》 2013年第11期70-74,共5页 Total Corrosion Control
关键词 数据融合 神经网络 管道缺陷 data fusion neural network pipeline detection
  • 相关文献

参考文献9

  • 1张奇兴.我国管道运输的现状和发展[J].中国石化,1998(8):37-39. 被引量:13
  • 2Jesse L,Mitchell.Smart pigs getting smarter to meet operatordemands[J].Pipeline & Gas.Industry,1996,79(6):37-41.
  • 3王为民.国内外石油管道输送技术发展综述[J].管道技术与设备,1997(4):4-8. 被引量:18
  • 4A staff report In-line inspection tools help maintain pipelineintegrity[J].Pipeline & Gaslndustry,1999,82(3):65266.
  • 5Marcel Roche,Jean Pierre Samaran.Aims,line conditions affectchoice of in 21ine inspection too[J].Oil & Gas Journal,1992,90(45):78-80.
  • 6[71薛振奎.我国油气管道综述[A].中国石油天然气管道科学研究院,管道科学研究论文选集(1999-2003)[C].北京,石油工业出版社,2004:8-9.
  • 7刘海峰,胡剑,杨俊.国内油气长输管道检测技术的现状与发展趋势[J].天然气工业,2004,24(11):147-150. 被引量:58
  • 8Jon Naylor.Advances in pigging technology[J].pipeline & GasJournal,1998,225(8):49-53.
  • 9R.Kania and L.B.Carroll,Non-destructive techniques formeasurement and assessmentof corrosion damage on pipelines.Calgary,Can,1998.

二级参考文献12

共引文献84

同被引文献42

  • 1杨理践,马凤铭,高松巍.基于神经网络及数据融合的管道缺陷定量识别[J].无损检测,2006,28(6):281-284. 被引量:8
  • 2Mandache C,Lefebvre J H V.Transient and Harmonic Eddy Currents:Lift-off Point of Intersection[J].NDT&E International,2006,39(1):57-60.
  • 3Kopp G,Willems H.Sizing Limits of Metal Loss Anomalies Using Tri-axial MFL Measurements:A Model Study[J].NDT&E International,2013,55(4):75-81.
  • 4Mukherjee D,Saha S,Mukhopadhyay S.An Adaptive Channel Equalization Algorithm for MFL Signal[J].NDT&E International,2012,45(1):111-119.
  • 5Haueisen J,Unger R,Beuker T.Evaluation of Inverse Algorithms in the Analysis of Magnetic Flux Leakage Data[J].IEEE Transactions on Magnetics,2002,38(3):1481-1488.
  • 6Plotnikov Y A,Bantz W J,Hansen J P.Enhanced Corrosion Detection in Airframe Structures Using Pulsed Eddy Current and Advanced Processing[J].Materials Evaluation,2007,65(4):403-410.
  • 7Tian G Y,Li Y,Mandache C.Study of Lift-off Invariance for Pulsed Eddy Current Signals[J].IEEE Transactions on Magnetics,2009,45(1):184-191.
  • 8Mirapeix J,Garcl'a-Allende P B,Cobo A,et al.Realtime Arc-welding Defect Detection and Classification with Principal Component Analysis and Artificial Neural Networks[J].NDT&E International,2007,40(4):315-323.
  • 9Li Y,Li Y F,Wang Q L,et al.Measurement and Defect Detection of the Weld Bead Based on Online Vision Inspection[J].IEEE Transactions on Instrumentation and Measurement,2010,59(7):1841-1849.
  • 10杨理践,马凤铭,高松巍.油气管道缺陷漏磁在线检测定量识别技术[J].哈尔滨工业大学学报,2009,41(1):245-247. 被引量:13

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部