期刊文献+

Mechanism of resveratrol on the promotion of induced pluripotent stem cells 被引量:2

Mechanism of resveratrol on the promotion of induced pluripotent stem cells
下载PDF
导出
摘要 OBJECTIVE: To investigate the effects of resveratrol (RV) in reprogramming mouse embryonic fibroblasts (MEFs) into induced pluripotent stem cells (iPSCs) and the related mechanism. METHODS: Primary MEFs were isolated from E13.5 embryos and used within three passages. Retroviruses expressing Sox2 and Oct4 were produced by transfecting GP2-293t cells with recombinant plasmids murine stern cell virus (MSCV)-Sox2 and MSCV-Oct4. Supernatants containing retroviruses were obtained after 48-hour transfection and MEFs were then infected. Different concentrations (0, 5, 10 and 20 IJmol/L) of RV were added to embryonic stem cell (ESC) medium to culture MEFs 48 h post-infection, iPSC clones emerged and were further cultured. Expression of pluripotent markers of iPSCs was identified by cell immunofluorescence and reverse transcription-polymerase chain reaction. Both cytotoxicity and cell proliferation were assayed by Western blot analysis after RV was added into ESC medium. The ultrastructure change of mitochondria was observed by electron microscopy. RESULTS: More than 2.9-fold and 1.3-fold increases in colony number were observed by treatment with RV at 5 and 10 pmol/L, respectively. The reprogramming efficiency was significantly decreased by treatment with 20 pmol/L RV. The proliferation effect on MEFs or MEFs infected by two factors Sox2/Oct4 (2 factors-MEFs, 2F-MEFs) was investigated after RV treatment. At 20 pmol/L RV, induced cell apoptosis and proliferation inhibition were more obvious than those of 5 and 10 IJmol/L treatments. Clones were selected from the 10 pmol/L RV-treated group and cultured. Green fluorescent protein expression from one typical clone was silenced one month later which expressed ESC-associated marker genes Gdf3, Nanog, Ecatl, Fgf4 and Foxd3. Electron transmission microscope showed obvious cavitations in mitochondria. The expression of hypoxia-inducible factor-la was up-regulated when 2F-MEFs were treated with RV compared to the control group. CONCLUSION: RV improved the efficiency of reprogramming 2F-MEFs into iPSCs at low and moderate concentrations (5 and 10 pmol/L). The effect of 10 pmol/L RV on reprogramming was much greater than that of 5 pmol/L RV. However, high concentration of RV (20 pmol/L) led to more severe cavitations in mitochondria and caused cytotoxic effects. Taken together, these findinqs suqclest that RV mimics hypoxia in cells and promotes reprogramming at a low concentration. OBJECTIVE: To investigate the effects of resveratrol (RV) in reprogramming mouse embryonic fibroblasts (MEFs) into induced pluripotent stem cells (iPSCs) and the related mechanism. METHODS: Primary MEFs were isolated from E13.5 embryos and used within three passages. Retroviruses expressing Sox2 and Oct4 were produced by transfecting GP2-293t cells with recombinant plasmids murine stern cell virus (MSCV)-Sox2 and MSCV-Oct4. Supernatants containing retroviruses were obtained after 48-hour transfection and MEFs were then infected. Different concentrations (0, 5, 10 and 20 IJmol/L) of RV were added to embryonic stem cell (ESC) medium to culture MEFs 48 h post-infection, iPSC clones emerged and were further cultured. Expression of pluripotent markers of iPSCs was identified by cell immunofluorescence and reverse transcription-polymerase chain reaction. Both cytotoxicity and cell proliferation were assayed by Western blot analysis after RV was added into ESC medium. The ultrastructure change of mitochondria was observed by electron microscopy. RESULTS: More than 2.9-fold and 1.3-fold increases in colony number were observed by treatment with RV at 5 and 10 pmol/L, respectively. The reprogramming efficiency was significantly decreased by treatment with 20 pmol/L RV. The proliferation effect on MEFs or MEFs infected by two factors Sox2/Oct4 (2 factors-MEFs, 2F-MEFs) was investigated after RV treatment. At 20 pmol/L RV, induced cell apoptosis and proliferation inhibition were more obvious than those of 5 and 10 IJmol/L treatments. Clones were selected from the 10 pmol/L RV-treated group and cultured. Green fluorescent protein expression from one typical clone was silenced one month later which expressed ESC-associated marker genes Gdf3, Nanog, Ecatl, Fgf4 and Foxd3. Electron transmission microscope showed obvious cavitations in mitochondria. The expression of hypoxia-inducible factor-la was up-regulated when 2F-MEFs were treated with RV compared to the control group. CONCLUSION: RV improved the efficiency of reprogramming 2F-MEFs into iPSCs at low and moderate concentrations (5 and 10 pmol/L). The effect of 10 pmol/L RV on reprogramming was much greater than that of 5 pmol/L RV. However, high concentration of RV (20 pmol/L) led to more severe cavitations in mitochondria and caused cytotoxic effects. Taken together, these findinqs suqclest that RV mimics hypoxia in cells and promotes reprogramming at a low concentration.
出处 《Journal of Integrative Medicine》 SCIE CAS CSCD 2013年第6期389-396,共8页 结合医学学报(英文版)
基金 supported by the National Basic Research Program of China(973 Program,No.2010CB530400) the Key Project of National Natural Science Foundation of China(No.30930111) Changjiang Scholar Chair Professor Project(Teach people(2009) 17) Shanghai Education Innovation Project(No.08YZ56) "Shu Guang" project supported by Shanghai Municipal Education Commission and Shanghai Education Development Foundation(No.10GG20) Shanghai University Innovation Team Programmer(Shanghai Education Commission, Division 6(2009))
关键词 RESVERATROL plant extracts pluripotent stem cells HYPOXIA mitochondria cavitation in vitro resveratrol plant extracts pluripotent stem cells hypoxia mitochondria cavitation in vitro
  • 相关文献

参考文献1

二级参考文献25

  • 1Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126:663-676.
  • 2Wernig M, Meissner A, Foreman R, et aI. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 2007; 448:318-324.
  • 3Maherali N, Sridharan R, Xie W, et al. Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell 2007; 1:55-70.
  • 4lakalaaslal K, lanabe K, tJlmuki M, et al. Induction ot plunpotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131:861-872.
  • 5Yu J, Vodyanik MA, Smuga-Otto K, et al. Induced pluripotent stem cell lines derived from human somatic ceils. Science 2007; 318:1917-1920.
  • 6Pei D. Regulation of pluripotency and reprogramming by transcription factors. JBiol Chem 2009; 284:3365-3369.
  • 7Li R, Liang J, Ni S, et al. A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts. Cell Stem Cell 2010; 7:51-63.
  • 8Samavarchi-Tehrani P, Golipour A, David L, et al. Functional genomics reveals a BMP-driven mesenchymal-to-epithelialtransition in the initiation of somatic cell reprogramming. Cell Stem Cell 201 O: 7:64-77.
  • 9Scholer HR, Hatzopoulos AK, Bailing R, Suzuki N, Gruss P. A family of octamer-specific proteins present during mouse embryogenesis: evidence for germline-specific expression of an Oct factor. EMBO J 1989; 8:2543-2550.
  • 10Nichols J, Zevnik B, Anastassiadis K, et al. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Ceil 1998; 95:379-391.

共引文献25

同被引文献25

引证文献2

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部