摘要
独立分量分析(ICA)旨在将观测的随机向量分解为相互独立的变量,其中快速定点算法(FastICA)及其变种以其快速简单的分离效果得到日益关注。健壮性独立分量分析(RobustICA)采用最优步长改进了FastICA的不足。最后在胎儿心电(FECG)分离方面和FastICA相比较,结果证明RobustICA优越的表现。
Independent component analysis (ICA)aims at decomposing an observed random vector into statistically in- dependent variables. Fast independent component analysis (FastICA) algorithm and its variants are catching more at tention because of their simplicity and convergence speed. In this paper, a novel method referred to robust independ- ent component analysis (RobustICA), based on normalized kurtosis and optimal step-size, is analyzed in detail. When applied to fetal electrocardiogram (FECG) extraction and compared with FastICA, it gave decent results and showed prosperous future usages.
出处
《生物医学工程学杂志》
EI
CAS
CSCD
北大核心
2013年第6期1191-1194,共4页
Journal of Biomedical Engineering
基金
国家自然科学基金资助项目(61271082
61201029
61102094)
江苏省自然科学基金资助项目(BK2011759
BK2011565)
关键词
快速定点算法
胎儿心电
峭度
最优步长
健壮性独立分量分析
Fast independent component analysis (FastlCA)
Fetal electrocardiogram( FECG)
Kurtosis
Optimalstep size
Robust independent component analysis(RobustICA)