期刊文献+

基于健壮性独立分量分析的胎儿心电分离 被引量:1

Fetal Electrocardiogram Extraction Based on Robust Independent Component Analysis
原文传递
导出
摘要 独立分量分析(ICA)旨在将观测的随机向量分解为相互独立的变量,其中快速定点算法(FastICA)及其变种以其快速简单的分离效果得到日益关注。健壮性独立分量分析(RobustICA)采用最优步长改进了FastICA的不足。最后在胎儿心电(FECG)分离方面和FastICA相比较,结果证明RobustICA优越的表现。 Independent component analysis (ICA)aims at decomposing an observed random vector into statistically in- dependent variables. Fast independent component analysis (FastICA) algorithm and its variants are catching more at tention because of their simplicity and convergence speed. In this paper, a novel method referred to robust independ- ent component analysis (RobustICA), based on normalized kurtosis and optimal step-size, is analyzed in detail. When applied to fetal electrocardiogram (FECG) extraction and compared with FastICA, it gave decent results and showed prosperous future usages.
作者 姚文坡 王俊
出处 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2013年第6期1191-1194,共4页 Journal of Biomedical Engineering
基金 国家自然科学基金资助项目(61271082 61201029 61102094) 江苏省自然科学基金资助项目(BK2011759 BK2011565)
关键词 快速定点算法 胎儿心电 峭度 最优步长 健壮性独立分量分析 Fast independent component analysis (FastlCA) Fetal electrocardiogram( FECG) Kurtosis Optimalstep size Robust independent component analysis(RobustICA)
  • 相关文献

参考文献15

  • 1COMON P. Independent component analysis, a new concept? [J]. Signal Processing, 1994,36(3) :287-314.
  • 2FORESTA F L,MAMMONE N. Independent component and wavelet analysis for fECG extraction: the stwaveform evalua- tion[C]//IEEE? International Conference on Computational Intelligence for Measurement Systems and Applications.Taormlna, Italy: 2005: 86-90.
  • 3TARALUNGA D, UNGUREANU M. Performance compari- son of four ICA algorithms applied for fECG extraction from transabdominal recordings [C]// Signals, Circuits and Sys- tems (ISSCS), 2011 10th International Symposium. Iasi, Ro mania : 2011 : 1-4.
  • 4BOROOMAND A, AHMADIAN A. An efficient hybrid wavelet-ICA algorithm for analyzing simulated fMRI data in noisy environment[C]// The 7th IEEE International Sympo slum on Signal Processing and Information Technology. Cai- ro, Egtvot ,2007,408 - 4151.
  • 5KIM J, CHOI J, YI J, et al. Effective representation using ICA for face recognition robust to local distortion and partial occlusion [J]. IEEE Trans Pattern Anal Mach IntelI, 2005,27 (12) :1977-1981.
  • 6LI H Y ,REN G I: Image denoising algorithm based on inde- pendent component analysis [C]// World Congress on Soft- ware Engineering. ? Xiamen, China: 2009:465 469.
  • 7I.IU X Z, FENG D W. Multi user detection of DS-CDMA based on PSO-ICA [C]// 2011 4th International Congress on Image and Signal? Processing. Shanghai,China :2011 :2490-2493.
  • 8WANG Z X,LIU Y H. Ovarian cancer mass spectrometry da ta analysis based on ICA algorithm [C]// International Semi nat on Future? BioMedical Information?? Engineering. Wu han,China: 2008:30-33.
  • 9ZARZOSO V, COMON P. Robust independent component a- nalysis by iterative maximization of the kurtosis contrast with algebraic optimal step size [J]. IEEE Transactions on Neural Networks,2010,21(2):248-261.
  • 10TUGNAIT J K . Identification and deconvolution of multi- channel linear non Gaussian processes using higher order sta- tistics and iaverse filter criteria [J]. IEEE Transactions on Signal Processing, 1997,45(3):658 - 672.

同被引文献19

  • 1谈华暠,刘海林.盲稀疏源信号分离算法的恢复性研究[J].广东工业大学学报,2007,24(3):28-31. 被引量:3
  • 2Turan S, Turan O M, Berg C, et al. Computerized fetal heart rate analysis, Doppler ultrasound and biophysical pro- file score in the prediction of acid-base status of growth - restricted fetuses [ J ]. Ultrasound in Obstetrics & Gynecolo- gy, 2007, 30 (5) : 750-756.
  • 3Graatsma E M, Jacod B C, Van Egmond L A J, et ah Fe- tal electrocardiography: feasibility of long term fetal heart rate recordings [ J ]. B JOG : An International Journal of Ob- stetrics & Gynaecology, 2009, 116(2): 334-338.
  • 4Abdulhay E W, Oweis R J, Alhaddad A M, et al. Review article:non-Invasive fetal heart rate monitoring techniques [ J ]. Biomedical Science and Engineering,2014,2 ( 3 ) : 53-67.
  • 5Gruber P, Meyer-Base A, Foo S, et al. ICA, kernel meth- ods and nonnegativity: New paradegms for dynamical com- ponent analysis of fMRI data[ J]. Engineering Applications of Artificial Intelligence, 2009, 22 (4) : 497-504.
  • 6Wenting S, Bin F, Pu W, et al. FECG extraction based on BSS of sparse signal [ C ] //Bioinformatics and Biomedical Engineering, ICBBE 2008. The 2nd International Confer- ence on. Shanghai:IEEE, 2008 : 1457-1460.
  • 7Lee T W, Lewicki M S, Girolami M, et al. Blind source separation of more sources than mixtures using overeomplete representations [ J ]. Signal Processing Letters, IEEE, 1999, 6(4): 87-90.
  • 8Li R, Chen B F. FECG extraction algorithm based on BSS using temporal structure and DWT[ J]. Applied Mechanics and Materials, 2014, 571 : 209-212.
  • 9Liu C, Li P, Di Maria C, et al. A multi-step method with signal quality assessment and fine-tuning procedure to lo- cate maternal and fetal QRS complexes from abdominal ECG recordings [ J]. Physiological Measurement, 2014, 35(8) : 1665.
  • 10蔡坤,王雷,谢胜利,等.胎儿心电检测的时域稀疏性线性混叠盲分离模型的判别方法:中国201110109980.5[P].2011-10-10.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部