期刊文献+

10 vol%TiC/Cu-Al_2O_3复合材料热变形及动态再结晶行为 被引量:1

Hot deformation and dynamic recrystallization behavior of 10 vol% TiC /Cu-Al_2O_3 composite
原文传递
导出
摘要 利用Gleeble-1500D热力模拟试验机,在温度为450~850℃、应变速率为0.001~1s^-1、真应变量0.7的条件下,研究和分析10vol%TiC/Cu—Al2O3复合材料高温塑性变形及动态再结晶行为。结果表明,材料的高温流变应力-应变曲线主要以动态再结晶软化机制为特征,峰值应力随变形温度降低或应变速率升高而增加,属于温度和应变速率敏感材料;材料热激活能为170.737kJ/mol;其硬化率-应力(θ-σ)曲线均呈现拐点且-dθ/dσ-σ曲线出现极小值;临界应变随应变速率的增大及变形温度的降低而增加,且临界应变(εc)与峰值应变(εp)之间具有一定相关性,即εc/εp=0.704;临界应变与Z参数之间的函数关系为εc=1.48×10^-2Z^0.0765. Using Gleeble-1500D simulator, the high-temperature plastic deformation behavior and dynamic recrystallization behavior of 10 vol% TiC/Cu-Al2O3 composite were investigated at 450 -850 ℃ with strain rate of 0. 001 -1 s^-1 and total strain of 0. 7. The results show that the softening mechanism of the dynamic recrystallization is a feature of high-temperature flow stress-strain curves of the composite, and the peak stress increases with the decreasing of deformation temperature or the increasing of strain rate, and the composite belongs to temperature and strain rate sensitive material. Based on the true stress-strain curves, the activation energy of the composites is 170. 737 kJ/mol. Meanwhile, the inflection point in the θ - σ curve appears and has a minimum value in the - dθ/dσ - σ curve when the critical state is attained for this composite. The critical strain increases with the increasing strain rate and the decreasing deformation temperature. There is linear relationship between critical strain and peak strain, i. e. , εc/εp = 0. 704. The predicting model of critical strain is described by the equation: εc = 1.48×10^-2Z^0.0765.
出处 《材料热处理学报》 EI CAS CSCD 北大核心 2013年第12期35-40,共6页 Transactions of Materials and Heat Treatment
基金 国家自然科学基金(51101052) 河南科技大学博士科研启动基金(09001199)
关键词 10vol%TiC Cu—Al2O3 复合材料 热变形 流变应力 动态再结晶 临界应变 10 vol% TiC/Cu-Al2O3 composite hot deformation flow stress dynamic recrystllization critical strain condition
  • 相关文献

参考文献17

二级参考文献134

共引文献132

同被引文献14

  • 1刘平,雷静果,井晓天,田保红.基于神经网络的Cu-Ni-Si-Cr合金时效性能预测研究[J].材料热处理学报,2005,26(1):86-89. 被引量:7
  • 2苏娟华,刘平,董企铭,李贺军,任风章,田保红.Cu-Cr-Zr合金时效强化机理[J].材料热处理学报,2005,26(6):62-65. 被引量:13
  • 3S. Suzuki,N. Shibutani,K. Mimura,M. Isshiki,Y. Waseda.Improvement in strength and electrical conductivity of Cu–Ni–Si alloys by aging and cold rolling[J]. Journal of Alloys and Compounds . 2005 (1)
  • 4Chengdong Xia,Yanlin Jia,Wan Zhang,Ke Zhang,Qiyi Dong,Genying Xu,Mingpu Wang.Study of deformation and aging behaviors of a hot rolled–quenched Cu–Cr–Zr–Mg–Si alloy during thermomechanical treatments[J]. Materials and Design . 2012
  • 5P.K. Jayakumar,K. Balasubramanian,G. Rabindranath Tagore.Recrystallisation and bonding behaviour of ultra fine grained copper and Cu–Cr–Zr alloy using ECAP[J]. Materials Science & Engineering A . 2011
  • 6A. Momeni,K. Dehghani.Characterization of hot deformation behavior of 410 martensitic stainless steel using constitutive equations and processing maps[J]. Materials Science & Engineering A . 2010 (21)
  • 7Ying Deng,Zhimin Yin,Jiwu Huang.Hot deformation behavior and microstructural evolution of homogenized 7050 aluminum alloy during compression at elevated temperature[J]. Materials Science & Engineering A . 2010 (3)
  • 8P. Hanzelka,V. Musilova,T. Kralik,J. Vonka.Thermal conductivity of a CuCrZr alloy from 5<ce:hsp sp="0.25"/>K to room temperatures[J]. Cryogenics . 2010 (11)
  • 9Hui Zhang,Honggang Zhang,Luoxing Li.Hot deformation behavior of Cu–Fe–P alloys during compression at elevated temperatures[J]. Journal of Materials Processing Tech. . 2008 (6)
  • 10Y.V.R.K. Prasad,K.P. Rao.Processing maps for hot deformation of rolled AZ31 magnesium alloy plate: Anisotropy of hot workability[J]. Materials Science & Engineering A . 2007 (1)

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部