摘要
大多故障诊断算法集中在线性系统方面,在非线性方面只考虑故障对状态起线性影响的那些系统.本文根据系统的非线性本质特性,提出了基于模型的一类非线性系统故障诊断观测器设计方法.应用系统的(B;K;á)实现精确分解后的系统模型,对它们的状态故障起非线性的影响.采用干扰解耦技术,获得的残差对未知扰动有很好的鲁棒性.在Lyapunov意义下,验证了算法的稳定性.仿真验证表明,所提算法具有快速收敛性,对一类非线性系统诊断效果较好.
Most of fault diagnosis algorithms deal with linear systems and nonlinear systems with states depending linearly on faults. According to essential properties of a nonlinear system, we propose a fault diagnosis algorithm for a class of nonlinear systems based on parameter estimation. The systems model is decomposed by the (B, K, φ) realization into models in which the states are affected nonlinearly by faults. By using the decoupling technology for disturbances, we make the resultant residuals to be completely robust to the unknown input disturbances. Stability of the algorithm is verified by using the Lyapunov function. Simulation results show that the proposed algorithm converges rapidly and provides perfect diagnosis for a class of nonlinear systems.
出处
《控制理论与应用》
EI
CAS
CSCD
北大核心
2013年第11期1462-1466,共5页
Control Theory & Applications
基金
国家自然科学基金资助项目(51079033)
中央高校基本科研业务费资助项目(HEUCF041229
HEUCF041205)
关键词
故障诊断
非线性系统
观测器设计
fault diagnosis
nonlinear systems
design of observer