摘要
设F是特征0的域,q∈F是个单位根.以F为基域、以q为量子参数,令s_q(n)为秩n的限制量子对称代数,∧_q(n)为秩n的量子外代数.据[6],S_q(n)与∧_q(n)的齐次分量都是单的U_q(gI_n)-模.本文将把S_q(n)的齐次分量与∧_q(n)的齐次分量的张量积分解成不可分解模的直和.
Assume (F) to be a field of characteristic zero,and q ∈ (F) to be a root of unity.With (F) as the ground field and q as the quantum parameter,let sq(n) be the restricted quantum symmetric algebra of rank n,and ∧q(n) be the quantum exterior algebra of rank n.By [6],the homogenous components of both Sq(n) and ∧q(n) are simple Uq(gIn)-modules.In this paper,we decompose the tensor product of any homogenous component of sq(n) with any homogenous component of ∧q(n) into direct sum of indecomposable modules.
出处
《华东师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2013年第6期1-13,共13页
Journal of East China Normal University(Natural Science)
基金
国家自然科学基金(11131001)