期刊文献+

基于Householder变换的模糊度规约算法 被引量:1

Ambiguity Reduction Algorithm Based on Householder Transformation
下载PDF
导出
摘要 基于格进行整周模糊度估计时,为保证最近向量问题的计算效率,通常需首先对格基进行规约变换。设计了基于Householder变换的LLL规约算法(H-LLL),算法通过利用分解得到的上三角矩阵来构造规约变换矩阵,从而实现格基的大小规约和长度规约。利用实测数据与经典LLL规约算法进行了比较,结果表明两种方法规约效果相同,H-LLL规约更加高效。 In order to keep the calculation efficiency of closest vector problems in integer ambiguity estimation based on lattice, the lattice base is needed to be reduction-transformed previously. The design of H-LLL algorithm is based on Householder transformation, and the size reduction and length reduction of lattice base are realized through the upper triangular matrix produced by householder transformation to construct the reduction transformation matrix. The classic reduction algorithm on the basis of gram schmidt orthogonalization, is compared with H-LLL algorithm by using the measured data, and the result shows that the two methods have the same reduction effect, but H-LLL reduction method is more efficient.
出处 《海洋测绘》 2013年第6期14-17,共4页 Hydrographic Surveying and Charting
基金 国家863计划项目(2009AA121405-05) 国家自然科学基金项目(41274045 61071006) 国家海洋局海底科学重点实验室开放基金(KLSG1002)
关键词 整周模糊度 格基规约 LLL规约 GRAM Schmidt正交化 Householder变换 integer ambiguity lattice base reduction LLL reduction gram schmidt orthogonalization householder transformation
  • 相关文献

参考文献9

  • 1Remondi B. Performing centimeter- level surveys in seconds with GPS carrier phase: initial results [ M ]. National Oceanic and Atmospheric Administration, National Ocean Service, Charting and Geodetic Services, 1985.
  • 2Teunissen P J G. The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation [ J ]. Journal of Geodesy. 1995.70 ( 1 - 2 ): 65 - 82.
  • 3Plantard T,Susilo W,Win K T. A digital signature scheme based on CVP [ M]//Public Key Cryptography - PKC 2008. SpfingerBerlin Heidelberg ,2008 : 288- 307.
  • 4Jazaeri S ,Amiri-Simkooei A R, Sharifi M A. Fast integer least-squares estimation for GNSS high-dimensional ambiguity resolution using lattice theory[J] Journal of Geodesy ,2012,86(2) : 123-136.
  • 5刘经南,于兴旺,张小红.基于格论的GNSS模糊度解算[J].测绘学报,2012,41(5):636-645. 被引量:27
  • 6Schnorr C P,Euchner M. Lattice basis reduction: improved practical algorithms and solving subset sum problems [J] Mathematics of Programming 1994,66:181-199.
  • 7Lenstra A K, Lenstra H W, Lovdsz L. Factoring polynomials with rational coefficients[J]. Mathema- tische Annalen, 1982,261 ( 4 ) : 515- 534.
  • 8Yao H, Wornell G W. Lattice-reduction-aided detectors for MIMO communication systems [ C ]//Global Telecommunications Conference, 2002. GLOBECOM" 02. IEEE. IEEE,2002, I : 424-428.
  • 9Babai L. On Lovdsz' lattice reduction and the nearest lattice point problem [J]Combinatorica, 1986,6 ( 1 ) : 1-13.

二级参考文献44

  • 1REMONDI B W. Pseudo-kinematic GPS Results Using the Ambiguity Function Method [J]. Navigation Journal of the Institute of Navigation, 1991, 38(1)17-36.
  • 2ABIDIN H Z. On the Construction of the Ambiguity Searching Space for On-the-fly Ambiguity Resolution [J]. Navigation: Journal of the Institute of Navigation, 1993, 40 (3): 321-338.
  • 3FREI E, BEUTLER G. Rapid Static Positioning Based on the Fast Ambiguity Resolution Approach FARA: Theory and First Results [J]. Manuscripta Geodaetica, 1990, 15 (6) 326-356.
  • 4CHEN D, LACHAPELLE G. A Comparison of the FASF and Least-squares Search Algorithms for on-the-fly Ambi- guity Resolution [J]. Navigation Journal of The Institute of Navigation, 1995, 42(2) :371-390.
  • 5TEUNISSEN P J G. Least-squares Estimation of the Integer GPS Ambiguities [C] //Proceedings of International Asso- ciation of Geodesy General Meeting. Beijing: [ s. n. ], 1993.
  • 6HAN S, RIZOS C. A New Method for Constructing Multi- satellite Ambiguity Combinations for Improved Ambiguity Resolution [C] // Proceedings of ION GPS-95..2. Cali{ornia: Is. n. 1, 1995.
  • 7LI Z, GAO Y. Direct Construction of High Dimension Ambiguity Transformation for the Lambda Method [C] // Proceeding of KIS97. Banffrs. n. 1,1997.
  • 8LIULT, HSUH T, ZHUYZ, et al. A New Approach to GPS Ambiguity Decorrelation [J]. Journal of Geodesy, 1999, 73(10) :478-490.
  • 9XU P. Random Simulation and GPS Decorrelation [J]. Journal of Geodesy, 2001,75 (7) 408-423.
  • 10CHANG X W, YANG X, ZHOU T. Mlambda A Modified LAMBDA Method for Integer Least-squares Estimation [J]. Journal of Geodesy, 2005,79(9):552-565.

共引文献26

同被引文献15

  • 1张贤达.矩阵分析与应用[M].北京:清华大学出版社,2006.
  • 2Micciancio D, Goldwasser S. Shortest vector problem [ M ]//Complexity of Lattice Problems. Springer US, 2002:69- 90.
  • 3Windpassinger C. Detection and precoding for multiple input multiple output channels [ M ]. Shaker,2004.
  • 4Yao H,Wornell G W. Lattice-reduction-aided detectors for MIMO communication systems [ C ]//Global Telecommunications Conference, 2002. GLOBECOM' 02. IEEE,2002,1:424-428.
  • 5Reuven I, Ben-Yishai A. Multiple-input multiple-output (MIMO) detector incorporating efficient signal point search and soft information refinement:U. S. Patent 7, 720,169 [ P]. 2010-5-18.
  • 6Damen M O, E1 Ganlal H, Caire G. On maximum- likelihood detection and the search for the closest lattice point [ J ]. Information Theory, IEEE Transactions on, 2003,49 (10) :2389-2402.
  • 7Remondi B. Performing centimeter-level surveys in seconds with GPS carder phase: initial results [ M ]. National Oceanic and Atmospheric Administration,National Ocean Service, Charting and Geodetic Services, 1985.
  • 8Hassibi A, Boyd S. Integer parameter estimation in linear models with applications to GPS [J]. IEEE Transactions on Signal Processing, 1998,46 ( 11 ) :2938-2952.
  • 9Schnorr C. P, Euchner M. Lattice basis reduction: improved practical algorithms and solving subset sum problems [ J ]. Mathematics of Programming, 1994,66 : 181-199.
  • 10Lenstra A K, Lenstra H W, Lovrsz L. Factoring polynomials with rational coefficients [ J ]. Mathernafische Annalen, 1982,261 (4) :515- 534.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部