期刊文献+

基于压缩感知的MIMO-OFDM系统稀疏信道估计算法 被引量:3

Compressed Sensing Based Sparse Channel Estimation in MIMO-OFDM Systems
下载PDF
导出
摘要 传统的多输入多输出-正交频分复用(MIMO-OFDM)无线通信系统信道估计算法,没有充分利用无线信道时域的固有稀疏性,导致估计精度不高且频谱利用率低等问题.在信道时域稀疏的前提下,研究了基于压缩感知的MIMO-OFDM系统信道估计算法,详细介绍了正交匹配追踪(OMP)和子空间追踪(SP)两种压缩感知算法原理和步骤,并同其它常用信道估计算法进行了比较分析.理论分析与仿真表明,所提出的压缩感知信道估计算法在频谱利用率以及估计性能方面比传统方法有显著提高,更具有效性. In multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) wire- less communication systems, traditional channel estimation methods did not make full use of the channel spar- sity which leads to low precision estimation and low frequency spectrum utilization. Under the premise of time domain channel sparsity, this paper studies compressed sensing based sparse channel estimation in MIMO- OFDM systems, then introduces Orthogonal Matching Pursuit (0MP) and Subspace Pursuit (SP) compressed sensing methods in details and makes a comparative analysis with other commonly used algorithm. Theoretical analysis and simulation shows that the new channel estimation methods in spectrum utilization and performance than the traditional methods have improved significantly and are more efficient.
出处 《郑州大学学报(工学版)》 CAS 北大核心 2013年第6期6-9,19,共5页 Journal of Zhengzhou University(Engineering Science)
基金 国家自然科学基金项目(61201251 61172086) 教育部博士点科研基金项目(20104101120011)
关键词 无线通信系统 稀疏信道估计 压缩感知 多输入多输出 正交频分复用 wireless communication system sparse channel estimation compressed sensing multiple-input multiple-output orthogonal frequency division multiplexing
  • 相关文献

参考文献12

  • 1LI Wei-chang,PREISIG J C.Estimation of rapidly time-varying sparse channel[J].IEEE J Ocean Eng,2007,32(4):927-939.
  • 2DONOHO D L.Compressed sensing[J].IEEE Transactions on Information Theory,2006,52(4):1289-1306.
  • 3CANDES E,TAO T.Near optimal signal recovery from random projection:universal encoding strategies?[J].IEEE Transactions on Information Theory,2006,52(12):5406-5425.
  • 4BAJWA WAHEED U,HAUPT J,SAYEED A M.Compressed channel sensing:a new approach to estimating sparse multipath channels[J].Proceeding of the IEEE,2010,98(6):1058-1076.
  • 5何雪云,宋荣方,周克琴.基于压缩感知的OFDM系统稀疏信道估计新方法研究[J].南京邮电大学学报(自然科学版),2010,30(2):60-65. 被引量:51
  • 6于华楠,郭树旭.基于压缩传感的MIMO-OFDM水声通信信道估计算法[J].系统工程与电子技术,2012,34(6):1252-1257. 被引量:6
  • 7TROPP J,GILBERT A.Signal recovery from random measurements via orthogonal matching pursuit[J].IEEE Transactions on Information Theory,2007,53(12):4655-4666.
  • 8DAI W,MILENKOVIC O.Subspace pursuit for compressive sensing signal reconstruction[J].IEEE Transactions on Information Theory,2009,55 (5):2 230-2249.
  • 9CANDES E,TAO T.Decoding by linear programming[J].IEEE Transactions on Information Theory,2005,51(12):4203-4215.
  • 10MALLAT S,ZHANG Z.Matching pursuit with timefrequency dictionaries[J].IEEE Transaction on Signal Processing,1993,41 (12):3397-3415.

二级参考文献26

  • 1TONG Lang,SADLER B M,DONG Min.Pilot-assisted wireless transmissions[J].IEEE Signal Processing Magzine,2004,2(6):12-25.
  • 2VAN DE BEEK J J,EDFORS O.On channel estimation in OFDM systems[C]//Proc of IEEE VTC 1995.Piscataway:IEEE,1995,2:815-819.
  • 3WU C J,LIN D W.Sparse channel estimation for OFDM transmission based on representative subspace fitting[C]//Proc of IEEE 61st Veh Technol Conf.Piscataway:IEEE,2005,1:495-499.
  • 4PAREDES J L,ARCE G R,WANG Zhongmin.Ultra-Wideband compressed sensing:channel estimation[J].IEEE Journal of Selected Topics in Signal Processing,2007,1(3):383-395.
  • 5TAUBOCK G,HLAWATSCH F.A compressed sensing technique for ofdm channel estimation in mobile environments:exploiting channel sparsity for reducing pilots[C]//Proceedings of ICASSP'2008.Piscataway:IEEE,2008:2885-2888.
  • 6DONOHO D L.Compreesed sensing[J].IEEE Trans on Inf Theory,2006,52(4):1289-1306.
  • 7BARANIUK R G.Compressive sensing[J].IEEE signal Processing Magazine,2007,24(4):118-120,124.
  • 8MALLAT S,ZHANG Z.Mathcing pursuit with time-frequency dictionaries[J].IEEE Tram on Signal Processing,1993,41(12):3393-3415.
  • 9TROPP J A,GILBERTA C.Signal recovery from random measurements via orthogonal matching pursuit[J].IEEE Trans on lnformation Theory,2007,53(12):4655-4666.
  • 10COFFER S F,RAO B D.Sparse channel estimation via matching pursuit with application to equalization[J].IEEE Trans on Communications.2002,50(3):374-377.

共引文献55

同被引文献24

  • 1王超.基于压缩感知的贪婪迭代重构算法[J].数据采集与处理,2012,27(S2):298-303. 被引量:12
  • 2Baron S,Sarvoham R,Baraniuk R G.Bayesian compressive sensing via belief propagation[J].IEEE Transactions on Signal Processing,2010,58(1):269-280.
  • 3Donoho D L.Compressed sensing[J].IEEE Transaction on Information Theory,2006,52(4):1289-1306.
  • 4Candes E J,Wakin M B.An introduction to compressive sampling[J].IEEE Signal Process,2008,25(2):21-30.
  • 5Bajwa W,Haupt J,Sayeed A.Compressing channel sensing:a new approach to estimating sparse multipath channels[J].Proceedings of the IEEE,2010,98(6):1058-1076.
  • 6Chenhao Qi,Lenan Wu.A hybrid compressing sensing algorithm for sparse channel estimation in MIMO OFDM systems[J].IEEE Transactions on Signal Processing,2011,58(1):3488-3491.
  • 7Chartrand R,Baraniuk R G,Eldar Y C.Introduction to the issue on compressive sensing[J].IEEE Journal Selected Topics Signal Process,2010,4(2):241-243.
  • 8陶晓峰,崔琪楣,徐晓东,等.4G/B4G关键技术及系统[M].北京:人民邮电出版社,2011.
  • 9Cai T,Wang L,Xu G W.New bounds for restricted isometry constants[J].IEEE Transactions on Information Theory,2010,56(9):4388-4394.
  • 10Varadarajan B,Khudanpur S,Tran T D.Stepwise optimal subspace pursuit for improving sparse recovery[J].IEEE Signal Processing Letters,2011,18(1):27-30.

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部