期刊文献+

人工蜂群算法优化支持向量机及其在音乐流派自动分类中的应用 被引量:5

Using ABC Algorithm Optimizing Support Vector Machines with Its Application in Musical Genre Automatic Classification
原文传递
导出
摘要 音乐流派是区分和描述不同音乐的一种标签,借助数学和计算机的方法将大量音乐自动分为不同流派是目前国内外研究的热点问题之一.支持向量机(SVM)由于其具有严格的数学理论基础而被广泛应用于音乐流派自动分类.然而,支持向量机的惩罚参数和核参数对其分类效果具有重要影响.以交叉验证正确率作为适应值,采用人工蜂群(ABC)算法优化支持向量的控制参数.在音乐流派自动分类的仿真实验中,经ABC算法优化后的支持向量机取得的平均预测正确率为80.8000%(最优预测正确率达83%),高出默认参数SVM 18.8个百分点.与粒子群优化算法及遗传算法相比,仿真实验结果同样显示了ABC算法的优越性. Musical Genres are labels used to distinguish and describe different pieces of mu- sic. It is now one of the hot topics both at home and abroad that automatically classifying large amount of music according to their genres with the help of mathematics and comput- ers. Support vector machines(SVM) are widely used in musical genre automatic classification since it is strictly supported by mathematical theory. However, the penalty and nuclear pa- rameters in SVM have significant impact on its effects of classification. This paper uses cross validation accuracy as the fitness value, and adopts Artificial Bee Colony (ABC) algorithm to optimize control parameters of SVM. In the simulation experiment of musical genre auto- matic classification, the optimized SVM gets 80.8000% mean prediction accuracy(and the best prediction accuracy is up to 83%) which exceeds the SVM using default parameters by 18.8 percent. Compared to Particle Swarm Optimization (PSO) and Genetic Algorithm (GA), the experimental results also show the superiority of ABC algorithm.
出处 《数学的实践与认识》 CSCD 北大核心 2013年第23期44-49,共6页 Mathematics in Practice and Theory
基金 广东白云学院校级科研项目(BYKY201217)
关键词 人工蜂群算法 支持向量机 音乐流派自动分类 Artificial bee colony algorithm support vector machines musical genre auto-matic classification
  • 相关文献

参考文献11

  • 1Tzanetakis G, Cook P. Musical genre classification of audio signals[J]. IEEE Transaction on Speech and Audio Processing, 2002, 10(5):293-302.
  • 2Dannenberg R, Foote J, Tzanetakis G, and Weare C. Panel: New directions in music information retrieval[C]. //Proceedings of the International Computer Music Association, 2001: 52-59.
  • 3Aucouturier J, and Pachet F. Representing musical genre: a state of the art[J]. Journal of New Music Research, 2003, 32(1): 83-93.
  • 4Zhong Y B, Xiang Y. Design and realization of music recognition based on speech recognition[C]//2011 International Conference on Network Computing and Information Security, 2011, 58-62.
  • 5Boser B E, Guyon I, and Vapnik V. A training algorithm for optimal margin classifiers[C]// Pro- ceedings of the Fifth Annual Workshop on Computational Learning Theory, ACM Press, 1992: 144-152.
  • 6Karaboga D. An idea based on honey bee swarm for numerical optimization[R]. Technical report, TR06, Engineering Faculty, Computer Engineering Department, Erciyes University, 2005.
  • 7Karaboga D, Basturk B. A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm[J]. Journal of Global Optimization, 2007, 39: 459-471.
  • 8Hsu C W, Chang C C, and Lin C J. A practical guide to support vector classification[J]. Department of Computer Science National Taiwan University, Taiwan, 2010.
  • 9George Tzanetakis等,MARSYAS开源软件框架,http://marsyas.info/.
  • 10Chang C C, and Lin C J. LIBSVM: a library for support vector machines, 2001. Software available at http://www.csie.ntu.edu.tw/cjlin/libsvm.

同被引文献50

  • 1陈功,张雄伟.一种基于灰关联分析的语音/音乐分类方法[J].声学技术,2007,26(2):262-267. 被引量:8
  • 2Karaboga D, Basturk B. A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm. Journal of Global Optimization, 2007, 39(3): 459-471.
  • 3Xiang Y, Peng Y, Zhong Y, Chert Z, Lu X, Zhong X. A particle swarm inspired multi-elitist artificial bee colony algorithm for real-parameter optimization. Computational Optimization and Applications, 2014, 57(2): 493-516.
  • 4Zhong Y, Xiang Y, et al. A hybrid dynamic multi-swarm PSO algorithm with Nelder-Mead simplex search method. Journal of Computational Information Systems, 2013, 9(19): 7741-7748.
  • 5Hedayatzadeh R, Hasanizadeh B, Akbari R, Ziarati K. A multi-objective artificial bee colony for optimizing multi-objective problems. The 3rd International Conference on Advanced Computer Theory and Engineering (ICACTE), 2010, 5: 277-281.
  • 6Omkar S, Senthilnath J, Khandelwal R, Naik G N, Gopalakrishnan S. Artificial bee colony (ABC) for multi-objective design optimization of composite structures. Applied Soft Computing, 2011, 11(1): 489-499.
  • 7Atashkari K, NarimanZadeh N, Ghavimi A R, Mahmoodabadi M J, Aghaienezhad F. Multi- objective optimization of power and heating system based on artificial bee colony. International Symposium on Innovations in Intelligent Systems and Applications (INISTA), 2011, 64-68.
  • 8Akbari R, Hedayatzadeh R, Ziarati K, Hassanizadeh B. A multi-objective artificial bee colony algorithm. Swarm and Evolutionary Computation, 2012, 2: 39-52.
  • 9Knowles J, Corne D. The Pareto archived evolution strategy: A new baseline algorithm for multiobjective optimization. Proceedings of the 1999 Congress on Evolutionary Computation, 1999, 1: 9-15.
  • 10Zitzler E, Laumanns M, Thiele L. SPEA2: Improving the strength Pareto evolutionary algorithm. Computer Engineering and Networks Laboratory (TIK) -Report, 2001, 103: 1-21.

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部