期刊文献+

k-方图的邻点可区别无圈边染色

On the Adjacent Vertex-Distinguishing Acyclic Edge Coloring of k-th Power Graphs
原文传递
导出
摘要 图G的一个正常边染色被称作邻点可区别无圈边染色,如果G中无二色圈,且相邻点关联边的色集合不同.图G的邻点可区别无圈边色数记为χ′_^(aa)(G),即图G的一个邻点可区别无圈边染色所用的最少颜色数.通过构造具体染色的方法,给出了一些k-方图的邻点可区别无圈边色数. A proper edge coloring of a graph G is called adjacent vertex-distinguishing acyclic edge coloring if there is no 2-colored cycle in G and the coloring set of edges incident to u is not equal to the coloring set of edges incident to v, where uv E E(G). The adjacent Vertex-distinguishing acyclic edge chromatic number of G, denoted by Xaa,(G), is the minimal number of colors in an adjacent vertex-distinguishing acyclic edge coloring of G. In this paper, we obtain adjacent vertex-distinguishing acyclic edge coloring of some k-th power graphs with construction method.
出处 《数学的实践与认识》 CSCD 北大核心 2013年第23期151-155,共5页 Mathematics in Practice and Theory
基金 国家自然科学基金(61163054 61163037) 肃省教育厅基金资助项目(0501-03)
关键词 k-方图 邻点可区别无圈边染色 邻点可区别无圈边色数 k-th power graphs adjacent vertex-distinguishing acyclic edge coloring adjace-nt vertex-distinguishing acyclic edge chromatic number
  • 相关文献

参考文献3

二级参考文献29

  • 1Alon N, Sadakov B., Zaks A. Acyclic Edge Colorings of Graphs. Journal of Graph Theory, 37:157-167 (2001)
  • 2Balister, P.N.,Bollobas, B., Shelp, R.H. Vertex distinguishing colorings of graphs with A(G) = 2. Discrete Mathematics, 252:17 -29 (2002)
  • 3Bazgan, C., Harkat-Benhamdine, A., Li, H., Wozniak, M. On the vertex-distinguishing proper edge-coloring of graphs. J. Combin. Theory (Series B), 75:288-301 (1999)
  • 4Bondy, J.A., Murty, U.S.R. Graph Theory with applications. The Macmillan Press Ltd, 1976
  • 5Burris, A.C., Schelp, R.H. Vertex-distinguishing proper edge-colorings. J. of Graph Theory, 26:73-82 (1997)
  • 6Chartrand, G., Lesniak-Foster, L. Graph and Digraphs, Ind. Edition. Wadsworth Brooks/Cole, Monterey, CA, 1986
  • 7Favaron, O., Li, H., Schelp, R.H. Strong edge coloring of graphs. Discrete Math., 159:103- 109 (1996)
  • 8Hansen, P., Marcotte, O. Graph coloring and application. AMS providence, Rhode Island USA, 1999
  • 9Molloy, M., Reed, B. Graph Coloring and the Probabilistic Method. Springer-Verlag, New York, Inc, 2002
  • 10Zhang, Z.F., Liu, L.Z., Wang, J.F. Adjacent strong edge coloring of graphs.- Applied Mathematics Letters, 15:623-626 (2002)

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部