摘要
提出求解一类非线性规划问题的有效数值算法,利用新引入的映射代替约束函数的梯度,在较弱的条件下,给出算法的收敛性证明.应该指出的是,结果在很大程度上改进了已有的结果,使得该算法能够处理更大一类非凸优化问题.
In this paper, we propose a homotopy interior point method for solving a class of non-convex optimization problems. By using newly introduced mappings instead of the gradi- ents of constraint functions, we construct a new homotopy equation. Under weak assumptions, we give a constructive proof for the convergence of the method. It should be pointed out that our results improve the previous ones greatly, so that we can deal with a broader class of non-convex optimization problems.
出处
《数学的实践与认识》
CSCD
北大核心
2013年第23期219-224,共6页
Mathematics in Practice and Theory
基金
河南省基础与前沿技术研究项目(122300410261)
关键词
非线性规划问题
约束函数
收敛性证明
non-convex optimization problems
homotopy interior point method
convergenceproof