期刊文献+

非线性规划问题的一种高效数值算法

A Effective Algorithm for Solving a Class of Non-Convex Optimization Problems
原文传递
导出
摘要 提出求解一类非线性规划问题的有效数值算法,利用新引入的映射代替约束函数的梯度,在较弱的条件下,给出算法的收敛性证明.应该指出的是,结果在很大程度上改进了已有的结果,使得该算法能够处理更大一类非凸优化问题. In this paper, we propose a homotopy interior point method for solving a class of non-convex optimization problems. By using newly introduced mappings instead of the gradi- ents of constraint functions, we construct a new homotopy equation. Under weak assumptions, we give a constructive proof for the convergence of the method. It should be pointed out that our results improve the previous ones greatly, so that we can deal with a broader class of non-convex optimization problems.
出处 《数学的实践与认识》 CSCD 北大核心 2013年第23期219-224,共6页 Mathematics in Practice and Theory
基金 河南省基础与前沿技术研究项目(122300410261)
关键词 非线性规划问题 约束函数 收敛性证明 non-convex optimization problems homotopy interior point method convergenceproof
  • 相关文献

参考文献12

  • 1Kellogg R B,Li T Y,Yorke J A.A constructive proof of the Brouwer fixed point theorem andcomputational results[J].SIAM J Numer Anal,1976,13:473-483.
  • 2Smale S,A convergent process of price adjustment and global Newton method[J].J Math Econ,1976,3:1-14.
  • 3Megiddo N,Pathways to the optimal set in linear programming,in Progress in Mathematical Programming[M].Interior Point and Related Methods(N.Megiddo,ed.),Springer,New York,1988,131-158.
  • 4Kojima M.,Mizuno S, Yoshise A.A primal-dual interior point algorithm for linear programming[J].Interior Point and Related Methods(N.Megiddo,ed.),Springer,New York,1988,29-47.
  • 5Kortanek K O,Potra F,Ye Y,On some efficient interior point algorithms for nonlinear convexprogramming[J].Linear Algebra Appl,1991,152:169-189.
  • 6Zhu J,A path following algorithm for a class of convex programming problems[J].OR-MethodsModels Oper Res,1992,36:359-377.
  • 7Billups S C,A homotopy based algorithm for mixed complementarity problems[J].SIAM J Optim,2002,12:583-605.
  • 8Billups S C,Watson L T,A Probability-one homotopy algorithm for nonsmooth equations andmixed complementarity problems[J].SIAM J Optim,2002,12:606-626.
  • 9Herings P J J,Schmedders K,Computing equilibria in finance economies with incomeplete marketsand transaction costs[J].Economic Theory,2006,27:493-512.
  • 10Lin Zhenghua,Zhu Daoli,Sheng Zhongping,Finding a minimal efficient solution of a convex mul-tiobjective program[J].Journal of Optimization Theory and Applications,2003,118:587-600.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部