期刊文献+

一类非线性二层规划问题的目标罚函数方法 被引量:1

AN OBJECTIVE PENALTY FUNCTION METHOD FOR A CLASS OF NONLINEAR BILEVEL PROGRAMMING PROBLEM
原文传递
导出
摘要 对于下层为线性规划问题的一类非线性二层规划问题,文章利用线性规划的对偶理论,将其转化为一个单层优化问题.除了添加下层问题的对偶间隙作为惩罚项外,还通过一个目标罚参数来调整上层问题的目标函数值,进而给出了一个求解此类二层规划问题的目标罚函数方法.最后,数值结果表明,所提出的方法是可行的. In this paper, we consider a class of nonlinear bilevel programming prob- lem in which the lower level is a linear programming problem. Using the dual theory, the original problem is transformed into a single level optimization problem. It not only appends the duality gap of the lower level problem with a penalty, but also gives an objective penalty parameter to adjust the value of the upper level objective func- tion. Then, we construct an objective penalty function method for such a problem. Finally, some numerical results show that the proposed method is feasible.
出处 《系统科学与数学》 CSCD 北大核心 2013年第10期1156-1163,共8页 Journal of Systems Science and Mathematical Sciences
基金 国家自然科学基金(71171150 11226226) 黄冈师范学院博士基金(2012029603)资助课题
关键词 非线性二层规划 罚函数方法 目标罚函数 全局最优解 Nonlinear bilevel programming, penalty function method, objectivepenalty function, globally optimal solution.
  • 相关文献

参考文献12

  • 1Bard J F. Practical Bilevel Optimization: Algorithms and Applications. Dordrecht: Kluwer Academic, 1998.
  • 2Dempe S. Foundations of Bilevel Programming. Nonconvex Optimization and Its Applications Series. Dordrecht: Kluwer Academic, 2002.
  • 3Dempe S. Annottated bibliography on bilevel programming and mathematical problems with equilibrium constraints. Optimization, 2003, 52: 333-359.
  • 4Anandalingam G, White D J. A solution for the linear static Stackelberg problem using penalty function. IEEE Transactions on Automatic Control, 1990, 35: 1170-1173.
  • 5White D J, Anandalingam G. A penalty function approach for solving bi-level linear programs. Journal of Global Optimization, 1993, 3: 397-419.
  • 6Camp@lo M, Dantas S, Scheimberg S. A note on a penalty function approach for solving bilevel linear programs. Journal of Global Optimization, 2000, 16: 245-255.
  • 7赵茂先,高自友.用罚函数求解线性双层规划的全局优化方法[J].运筹与管理,2005,14(4):25-28. 被引量:10
  • 8吕一兵,陈忠,万仲平,王广民.非线性-线性二层规划问题的罚函数方法[J].系统科学与数学,2009,29(5):630-636. 被引量:9
  • 9郑跃,万仲平,吕一兵.非线性二层规划问题的全局优化方法[J].系统科学与数学,2012,32(5):513-521. 被引量:11
  • 10Meng Z Q, Hu Q Y, Dang C Y, Yang X Q. An objective penalty function method for nonlinear programming. Applied Mathematics Letters, 2004, 17: 683-689.

二级参考文献23

  • 1仲伟俊,徐南荣.两层决策的波尔兹曼机方法[J].系统工程学报,1995,10(1):7-13. 被引量:10
  • 2Bard J F.Some properties of the bilevel linear programming.Journal of Optimization Theory and Applications,1991,32:146-164.
  • 3Vicente L,Savard G,Judice J.Descent approaches for quadratic bilevel programming.Journal of Optimization Theory and Applications,1994,81(2):379-399.
  • 4Bard J F.Practical Bilevel Optimization:Algorithm and Applications.Kluwer Academic Publishers,Dordrecht,1998.
  • 5Dempe S.Foundation of Bilevel Programming.Kluwer Academic Publishers,London,2002.
  • 6Closon B,Marcotte P,Savard G.A trust-region method for nonlinear bilevel programming:Algorithm and computational experience.Computational Optimization and Applications,2005,30(3):211-227.
  • 7Wang G M,Wang X J,et al.A globally convergent algorithm for a class of bllevel nonlinear programming problem.Applied Mathematics and Computation,2007,188:166-172.
  • 8L(u) Y B,Hu T S,Wan Z P.A penalty function method based on Kuhn-Tucker condition for solving linear bilevel programming.Applied Mathematics and Computation,2007,188:808-813.
  • 9Shi C,Zhang G,Lu J.On the definition of linear bilevel programming solution.Applied Mathematics and Computation,2005,160:169-173.
  • 10腾春贤 李智慧.二层规划的理论与应用[M].北京:科学技术出版社,2002,9..

共引文献23

同被引文献20

  • 1Manupati V K, Thakkar J J, Wong K Y, Tiwari M K. Near optimal process plan selection for multiple jobs in networked based manufacturing using multi-objective evolutionary algorithms. Computers & Industrial Engineering, 2013, 66(1): 63-76.
  • 2Kanyalkar A P, Adil G K. An integrated aggregate and detailed planning in a multi-site pro- duction environment using linear programming. International Journal of Production Economics, 2005, 43(20): 4431-4454.
  • 3Lin H W, Nagalingam S V, Kuik S S, Murata T. Design of a global decision support system for a manufacturing SME: Towards participating in collaborative manufacturing. International Journal of Production Economics, 2012, 136(1): 1-12.
  • 4Tseng Y J, Kao Y W, Huang F Y. A model for evaluating a design change and the distributed manufacturing operations in a collaborative manufacturing environment. Computers in Industry, 2008, 59(8): 798-807.
  • 5Mansouri S A, Gallear D, Askariazad M H. Decision support for build-to-order supply chain man- agement through multiobjective optimization. International Journal of Production Economics, 2012, 135(1): 24-36.
  • 6Yu D, Jin J H, Ceglarek D, Shi J J. Process-oriented tolerancing for multi-station assembly systems. IIE Transactions, 2005, 37(6): 493-508.
  • 7Tseng Y J, Huang F Y. A multi-plant tolerance allocation model for products manufactured in a multi-plant collaborative manufacturing environment. International Journal of Production Research, 2009, 47(3): 733 749.
  • 8Mustajib M I. Model Simultan Penentuan Komponen Produk Rakitan dan Pabrik dalam Kolab- orasi Manufaktur Make-to-order. Journal Teknik Industry, 2010, 12(2): 109-118.
  • 9Wang X Q, Tang J F. A scatter search approach with dispatching rules for a joint decision of cell formation and parts scheduling in batches. International Journal of Production Research, 2010, 48(12): 3513-3534.
  • 10Molina J, Laguna M, Marti R, Caballero R. SSPMO: A scatter Tabu search procedure for non- linear multiobjective optimization. Informs Jour"nal on Computing, 2007, 19(1): 91-100.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部