摘要
对于下层为线性规划问题的一类非线性二层规划问题,文章利用线性规划的对偶理论,将其转化为一个单层优化问题.除了添加下层问题的对偶间隙作为惩罚项外,还通过一个目标罚参数来调整上层问题的目标函数值,进而给出了一个求解此类二层规划问题的目标罚函数方法.最后,数值结果表明,所提出的方法是可行的.
In this paper, we consider a class of nonlinear bilevel programming prob- lem in which the lower level is a linear programming problem. Using the dual theory, the original problem is transformed into a single level optimization problem. It not only appends the duality gap of the lower level problem with a penalty, but also gives an objective penalty parameter to adjust the value of the upper level objective func- tion. Then, we construct an objective penalty function method for such a problem. Finally, some numerical results show that the proposed method is feasible.
出处
《系统科学与数学》
CSCD
北大核心
2013年第10期1156-1163,共8页
Journal of Systems Science and Mathematical Sciences
基金
国家自然科学基金(71171150
11226226)
黄冈师范学院博士基金(2012029603)资助课题
关键词
非线性二层规划
罚函数方法
目标罚函数
全局最优解
Nonlinear bilevel programming, penalty function method, objectivepenalty function, globally optimal solution.