期刊文献+

基于权值的双层多损失条件风险值模型 被引量:1

BILEVEL MULTI-LOSS CONDITIONAL VALUE-AT-RISK MODEL BASED ON THE WEIGHTS
原文传递
导出
摘要 条件风险值模型是风险管理中的一种重要工具.文章研究了一种具有上下层决策的多损失条件风险值模型,引入了基于权值的多个损失函数下的α-VaR损失值(最小风险值)和α-CVaR损失值(最小风险值对应的条件期望损失值或条件风险价值度量)概念,提出了基于权值的双层多损失条件风险值模型,该模型的目标是求上下层的基于权值的多损失α-CVaR达最小的最优解,并证明了它可以通过另一个较容易求解的双层规划模型获得最优解.最后,给出含一个制造商与零售商的供应链关于一种产品的定价与订购的双层条件风险值模型,该模型可以求出供过于求和供不应求风险最小下的制造商最小批发价和零售商最优订购量. The conditional value-at-risk model is an important tool in risk man- agement. This paper studies a multi-loss conditional value-at-risk model with upper and lower decision-making. We introduce the concept of α-VaR loss value (minimum value at risk) and α-CVaR loss value (minimum risk value corresponding to the loss of value of the conditional expectation or conditional value at risk measure) of a multi-loss function based on the weights. We propose a bilevel multi-loss conditional value-at-risk model based on the weights. The objective is to find out an optimal solution to the model of upper level and lower level value of multi-loss α-the CVaR's based on the weights. We show that it can be solved more easily through another bilevel programming model to obtain the optimal solution. Finally, we give a bilevel conditionM value-at-risk model, including pricing and ordering of a supply chain to manufacturers and retailers on a product model calculated the minimum wholesale price of oversupply and shortage of risk minimization under the manufacturer and retailers excellent order amount.
作者 蒋敏
出处 《系统科学与数学》 CSCD 北大核心 2013年第10期1178-1188,共11页 Journal of Systems Science and Mathematical Sciences
基金 国家自然科学基金项目(71001089)资助课题
关键词 条件风险值 多损失 双层规划 权值 Conditional value-at-risk, multi-loss function, bilevel programming, weight.
  • 相关文献

参考文献28

  • 1Stackelberg H V. The Theory of the Market Economy. Oxford: Oxford University Press, England, 1952.
  • 2Dempe S. Annotated bibliography on bilevel programming and mathematical programs with equilibrium constraints. Optimization, 2003, 52(3): 333-359.
  • 3Colson B, Marcotte P, Savard G. Bilevel programming: A survey. A Quarterly J. of Operation Research, 2005, 4(2): 87-107.
  • 4Gabriele E. Multiobjective bilevel optimization. Mathematical Programming, 2010, 123: 419-449.
  • 5Wanmei S. A review of multi-product pricing models. Applied Mathematics and Computation, 2011, 217(21): 8149-8165.
  • 6Baumol W J. An expected gain-confidence limit criterion for portfolio selection. Management Science, 1963, 10(2): 174-182.
  • 7Rockafellar R T, Uryasev S. Optimization of conditional value-at-risk. The Journal of Risk, 2000, 2(3): 21-41.
  • 8Rockafellar R T, Uryasev S. Conditional value-at-risk for general loss distributions. Journal of Banking 8z Finance, 2002, 26: 1443-1471.
  • 9Alexander G J, Baptista A M. A comparison of VaR and CVaR constraints on portfolio selection with the mean-variance model. Management Science, 2004, 50(9): 1261-1273.
  • 10Enrico A, Renata M M, Grazia S. A comparison of MAD and CVaR models with real features. Journal of Banking Finance, 2008, 32: 1188-1197.

二级参考文献59

共引文献25

同被引文献26

  • 1燕子宗,费浦生,万仲平.多层线性规划问题的整体优化算法(英文)[J].数学杂志,2007,27(3):237-242. 被引量:1
  • 2蒋敏.多目标条件风险值理论研究[D].西安:西安电子科技大学,2005.
  • 3Sta~kelberg H V. The Theory of the Market Economy[M]. Oxford: Oxford University Press, 1952.
  • 4Luis N. Vicente, Paul H. Calamai, Bilevel and multilevel programming: A bibliography review[J]. Journal of Global Optimization, 1994, 5(3): 291-306.
  • 5Colson B, Marcotte P, Savard G. Bilevel programming: a survey[J]. A Quarterly Journal of Operation Research, 2005, 4(2): 87-107.
  • 6Benson H P. On the strueture and properties of a linear multilevel programming problem[J]. Journal of Optimization Theory and Applications, 1989, 60(3): 353-373.
  • 7Bard J F. An investigation of the linear three-level programming problem[J]. IEEE Trans- actions Systems, Man, and Cybernetics, 1984, 14(5): 711-716.
  • 8Wen U P, Bialas W F. The hybrid algorithm for solving the three-level linear programming problem[J]. Computers & Operations Research, 1986, 13(4): 367-377.
  • 9White D J. Penalty function approach to linear trilevel programming[J]. Journal of Opti- mization Theory and Applications, 1997, 93(1): 183-197.
  • 10Zhu Shushang , Wang Shouyang, Coladas L. Two theorems on multilevel programming problems with dominated objective functions[J]. Applied Mathematics Letters, 2001, 14(8): 927-932.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部