期刊文献+

Burr Type Ⅻ分布参数的经验Bayes检验问题 被引量:2

EMPIRICAL BAYES TEST PROBLEM FOR THE PARAMETER OF BURR TYPE XII DISTRIBUTION
原文传递
导出
摘要 研究了Burr Type XII分布参数的经验Bayes(EB)单侧和双侧检验问题.利用密度函数的递归核估计构造了参数的EB检验函数,并在适当的条件下证明了所提出的EB检验函数的渐近最优性,获得了其收敛速度.最后给出一个有关主要结果的例子. In this paper, we consider the empirical Bayes (EB) one-sided and two- sided test problems for the parameter of Burr Type Ⅻ distribution. The EB test rules are constructed by using the recursive kernel estimation of probability density function. The asymptotically optimal property and convergence rates for the proposed EB test rules are obtained under suitable conditions. Finally, an example shows the effectiveness of the main results.
出处 《系统科学与数学》 CSCD 北大核心 2013年第10期1199-1209,共11页 Journal of Systems Science and Mathematical Sciences
基金 西安建筑科技大学青年科技基金(QN1136,QN1243) 西安建筑科技大学校人才基金(RC1318)资助课题
关键词 BURR TYPE X11分布 递归核估计 经验BAYES检验 渐近最优性 收敛速度 Keywords Burr Type Ⅻ distribution, recursive kernel estimation, empirical Bayestest, asymptotic optimality, convergence rates.
  • 相关文献

参考文献13

  • 1Rosenblatt M. Remarks on some nonparametric estimates of a density function. Ann. Math. Statist., 1956, 27: 832-837.
  • 2Wolverton C T, Wagner T J. Asymptotically optimal discriminant functions for pattern classifi- cation. IEEE Transactions Information Theory, 1969, 15(2): 258-265.
  • 3Burr I W. Cumulative frequency functions. Ann. Math. Statist., 1942, 13(2): 215-232.
  • 4Rastogi M K, Tripathi Y M. Estimating the parameters of a Burr distribution under progressive type II censoring. Statistical Methodology, 2012, 9(3): 381-391.
  • 5Soliman A A. Reliability estimation in a generalized life-model with application to the Burr XII. IEEE Transactions on Reliability, 2002, 51(3): 337-343.
  • 6Wu S F, Wu C C, Chen L Y, et al. Interval estimation of a two-parameter Burr-XII distribution under progressive censoring. Statistics, 2010, 44(1): 77-88.
  • 7Wingo D R. Maximum likelihood methods for fitting the Burr XII distribution to life test data. Biometrical J., 1983, 25: 77-81.
  • 8Robbins H. An empirical Bayes approach to statistics. Proc. Third Berkeley Symp. Math. Statist. Probab., Jerzy Neyman, Berkeley, University of California Press, 1956, 1: 157-163.
  • 9陈家清,刘次华.线性指数分布参数的经验Bayes检验问题[J].系统科学与数学,2008,28(5):616-626. 被引量:17
  • 10黄金超,凌能祥.威布尔分布族参数的经验Bayes检验[J].合肥工业大学学报(自然科学版),2012,35(6):860-864. 被引量:11

二级参考文献13

共引文献42

同被引文献17

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部