摘要
广义特征值中心支持向量回归机(GEPSVR)是一种有效的核回归算法,但其在求解优化问题时易导致奇异性问题.为此,提出一种基于特征值分解的支持向量回归机,简称IGEPSVR.与GEPSVR相比,IGEPSVR的主要优势有:结合最大间隔准则和GEPSVR几何思想给出了新的距离度量准则;在优化模型中引入Tikhonov正则项,克服了可能产生的奇异性问题;IGEPSVR仅需求解两个标准特征值,降低了计算复杂度.实验结果表明,较GEPSVR算法,IGEPSVR不仅提高了学习能力,而且缩短了训练时间.
The generalized eigenvalue proximal support vector regressor(GEPSVR) is an effective kernel-based regression algorithm. However, the generalized eigenvalue problems may be ill-conditioned in the GEPSVR. Therefore, a maximum margin eigenvalue proximal support vector regressor(IGEPSVR) is proposed. The main advantages are as following by defining the distances between the insensitive functions and data points, a novel optimization model is proposed according to the maximum margin criterion and GEPSVR; the possible ill-conditioned problem is overcome by introducing the meaningful Tikhonov regularization terms; the generalized eigenvalue decomposition is replaced by the standard eigenvalue decomposition, leading to simpler optimization problems. Experimental results on a series of datasets show that IGEPSVR is superior to GEPSVR in both generalization and training speed.
出处
《控制与决策》
EI
CSCD
北大核心
2013年第12期1817-1821,共5页
Control and Decision
基金
国家自然科学基金项目(11201426
11071252
61203133)
浙江省自然科学基金项目(LQ12A01020
LQ13F030010)
浙江省教育厅科研基金项目(Y201225179
Y201225256)
关键词
支持向量回归机
广义特征值中心支持向量机
非平行不敏感函数
特征值分解
support vector regression
generalized eigenvalue proximal support vector regressor
nonparallel insensitivefunctions
eigenvalue decomposition