期刊文献+

基于特征值分解的最大间隔支持向量回归机 被引量:1

Maximum margin eigenvalue proximal support vector regressor
原文传递
导出
摘要 广义特征值中心支持向量回归机(GEPSVR)是一种有效的核回归算法,但其在求解优化问题时易导致奇异性问题.为此,提出一种基于特征值分解的支持向量回归机,简称IGEPSVR.与GEPSVR相比,IGEPSVR的主要优势有:结合最大间隔准则和GEPSVR几何思想给出了新的距离度量准则;在优化模型中引入Tikhonov正则项,克服了可能产生的奇异性问题;IGEPSVR仅需求解两个标准特征值,降低了计算复杂度.实验结果表明,较GEPSVR算法,IGEPSVR不仅提高了学习能力,而且缩短了训练时间. The generalized eigenvalue proximal support vector regressor(GEPSVR) is an effective kernel-based regression algorithm. However, the generalized eigenvalue problems may be ill-conditioned in the GEPSVR. Therefore, a maximum margin eigenvalue proximal support vector regressor(IGEPSVR) is proposed. The main advantages are as following by defining the distances between the insensitive functions and data points, a novel optimization model is proposed according to the maximum margin criterion and GEPSVR; the possible ill-conditioned problem is overcome by introducing the meaningful Tikhonov regularization terms; the generalized eigenvalue decomposition is replaced by the standard eigenvalue decomposition, leading to simpler optimization problems. Experimental results on a series of datasets show that IGEPSVR is superior to GEPSVR in both generalization and training speed.
出处 《控制与决策》 EI CSCD 北大核心 2013年第12期1817-1821,共5页 Control and Decision
基金 国家自然科学基金项目(11201426 11071252 61203133) 浙江省自然科学基金项目(LQ12A01020 LQ13F030010) 浙江省教育厅科研基金项目(Y201225179 Y201225256)
关键词 支持向量回归机 广义特征值中心支持向量机 非平行不敏感函数 特征值分解 support vector regression generalized eigenvalue proximal support vector regressor nonparallel insensitivefunctions eigenvalue decomposition
  • 相关文献

参考文献15

  • 1Vapnik V. Statistical1eaming theory[M]. New York: Wiley Press, 1998: 401-421.
  • 2王晓明,王士同.最小方差支撑向量回归[J].控制与决策,2010,25(4):556-561. 被引量:1
  • 3Jayadeva Khemchandani R. Twin support vector machines for pattern classification[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2007, 29(5): 905-910.
  • 4Shao Y, Zhang C, Wang X. Improvements on twin support vector machines[J]. IEEE Trans on Neural Networks, 2011, 22(6): 962-968.
  • 5Shao Y, Deng N, Yang Z. Least squares recursive projection twin support vector machine for classification[J]. Pattern Recognition, 2012, 45(6): 2299-2307.
  • 6Shao Y, Deng N, Chen W. Improved generalized eigenvalue proximal support vector machine[J]. IEEE Signal Processing Letters, 2013, 20(3): 213-216.
  • 7Peng X. TSVR: An efficient twin support vector machine for regression[J]. Neural Networks, 2010, 23(3): 365-372.
  • 8Shao Y, Zhang C, Yang Z. An s-twin support vector machine for regression[J]. Neural Computing & Applicati?ons, 2012, 23(1): 175-185.
  • 9Mangasarian 0 L, Wild E W. Mu1tisurface proximal support vector machine classification via generalized eigenvalues[J]. IEEE Trans on. Pattern Analysis and Machine Intelligence, 2006, 28(1): 69-74.
  • 10Khemchandani R, Karpatne A, Chandra S. Generalized eigenvalue proximal support vector regressor[J]. Expert Systems with Applications, 2011, 38(10): 13136-13142.

二级参考文献14

  • 1Smola A J, Scholkopf B. A tutorial on support vector regression[J]. Statistics and Computing, 2004, 14(3): 199- 222.
  • 2Ingo S. Consistency of other regularized kernel Information Theory, 2005 support vector machines and classifiers[J]. IEEE Trans on 51(1): 128-142.
  • 3Bi J B, Kristin P B. A geometric approach to support vector regression[J]. Neurocomputing, 2003, 55(2): 79-108.
  • 4Vapnik V. Statistical learning theory[M]. New York: Wiley, 1998.
  • 5Zafeiriou S, Tefas A, Pitas I. Minimum class variance support vector machines[J]. IEEE Trans on Image Processing, 2007, 16(10): 2551-2564.
  • 6Fletcher R. Practical methods of optimization[M]. 2nd ed. New York: Wiley, 1987.
  • 7Yang J, Yang J Y. Why can LDA be performed in PCA transformed space? [J]. Pattern Recognition, 2003, 36(2): 563-566.
  • 8Duda R O, Hart P E, Stork D G. Pattern classification[M]. 2nd ed. New York: Wiley, 2001.
  • 9Scholkopf B, Smola A. Learning with kernels[M]. Cambridge: MIT Press, 2002.
  • 10Scholkopf A, Smola B, Muller K R. Nonlinear component analysis as a kernel eigenvalue problem[J]. Neural Computing, 1998, 10(5): 1299-1319.

同被引文献12

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部