期刊文献+

碳酸氢铵-反向电渗析模块构型研究 被引量:3

The configuration of reverse electrodialysis stacks utilizing ammonium bicarbonate solutions
下载PDF
导出
摘要 为了提高碳酸氢铵-反向电渗析模块的产电性能,对其构型进行了优化,并分析了其能量效率的变化特点.结果表明,当碳酸氢铵-反向电渗析模块采用5对离子交换膜及0.2mm厚的隔板时,其功率密度可达最大值0.85W/m2(不计电极系统能量损耗).膜对数量不超过8时,开路电压、内阻及最大功率密度均随膜对数的增加而逐渐升高,且膜对数与开路电压、内阻均呈现出良好的线性关系;膜对数量大于8时,装置产电性能逐渐变差.对于相同种类的隔板,采用较薄的隔板能减小装置的内阻,其产电性能更好;对于同等厚度的隔板,编织结构紧密的隔板更优.实验中装置能量效率稳定于30%左右,表明其在能量利用方面具有一定优势. The configuration of a reverse electrodialysis (RED) stack utilizing ammonium bicarbonate solution was optimized in order to improve the power output.The variation of energy efficiency was also analyzed.The results showed that a maximum power density of 0.85 W/m2 was achieved with the use of five cell pairs and a spacer with a thickness of 0.2 mm when ignoring the power consumption due to the electrode system.When the number of cell pairs ranged from 2 to 8,the open circuit voltage,internal resistance and maximum power density all improved gradually with increasing number of cell pairs.Meanwhile,the number of cell pairs had a good linear relationship with both the open circuit voltage and internal resistance.However the RED stack had a reduced power output when the number of cell pairs was over 8.For two spacers with the same type,the thinner one resulted in a decreased internal resistance and thus increased the power output.For the spacers with the same thickness,the one with a compact woven structure performed better.Energy efficiency of the RED stack stabilized at about 30% during the experiment,which shows its promise for energy utilization.
出处 《膜科学与技术》 CAS CSCD 北大核心 2013年第6期6-12,共7页 Membrane Science and Technology
基金 国家高技术研究发展计划"863"项目(2011AA060907)
关键词 反向电渗析 碳酸氢铵 废热 构型 reverse electrodialysis ammonium bicarbonate waste heat configuration
  • 相关文献

参考文献18

  • 1Pattle R E. Production of electric power by mixing fresh and salt water in the hydroelectric pile[J]. Nature, 1954, 174(4431): 660.
  • 2PostJ W, Hamelers H V M, Buisman CJ N. Influence of multivalent ions on power production from mixing salt and fresh water with a reverse electrodialysis sys?tem[J].J Membr Sci, 2009, 3300-2): 65-72.
  • 3Turek M, Bandura B. Renewable energy by reverse e?lectrodialysis[J]. Desalination, 2007, 205 (1 - 3): 67 -74.
  • 4Cusick R D, Kim y, Logan B E. Energy capture from thermolytic solutions in microbial reverse- electrodialy?sis cells[J]. Science, 2012, 335(6075): 1474-1477.
  • 5Luo Xi, Cao Xiaoxin , Mo Yinghui, et al. Power gener?ation by coupling reverse electrodialysis and ammonium bicarbonate: Implication for recovery of waste heat[J]. Electrochem Commun , 2012, 19: 25-28.
  • 6Chen Huijuan, Goswami D v . Stefanakos E K. A re?view of thermodynamic cycles and working fluids for the conversion of low-grade heat[J]. Renew Sust Energ Rev, 2010, 14(9): 3059-3067.
  • 7Tchanche B F, Lambrinos G, Frangoudakis A, et al. Low-grade heat conversion into power using organic Rankine cycles: A review of various applications[J]. Renew Sust Energ Rev, 2011, 15(8): 3963-3979.
  • 8VeermanJ, Saakes M, Metz SJ, et al. Reverse elec?trodialysis: A validated process model for design and optimization[J]. Chern EngJ, 2011, 166 (1): 256- 268.
  • 9VeermanJ, Saakes M, Metz SJ, et al. Reverse electro?dialysis: Performance of a stack with 50 cells on the mixing of sea and river water[J].J Membr Sci, 2009, 327(1-2): 136-144.
  • 10VeermanJ, SaakesM, MetzSJ, etal. Electrical pow?er from sea and river water by reverse electrodialysis: A first step from the laboratory to a real power plant[J]. Environ Sci Technol, 2010, 44 (23): 9207- 9212.

同被引文献13

引证文献3

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部