期刊文献+

运动和营养对线粒体能量代谢的调控 被引量:1

Regulation of Exercise and Nutrients on Mitochondrial Metabolism
下载PDF
导出
摘要 自19世纪50年代被发现以来,有关线粒体的研究从未停歇。作为一种存在于大多数真核细胞中的双层膜细胞器,线粒体负责提供机体活动所需要的大部分ATP,同时参与多种细胞生理活动,为适应细胞不同条件下的需求,线粒体数目处于动态变化之中,同时线粒体也可以通过融合和分裂来实现形态和功能上的改变。运动作为一种有益健康的生活方式,其关键作用是能够激活肌肉细胞内过氧化物酶体增殖物激活受体γ辅助活化因子1α(PGC-1α),从而诱导下游多种转录因子的表达,促进线粒体蛋白合成的增加,最终合成更多功能完善的线粒体,有效改善机体能量代谢。该综述将着重介绍线粒体营养素羟基酪醇、白藜芦醇及硫辛酸在运动状态下对线粒体代谢包括线粒体生成、线粒体融合和分裂的调控作用以及其潜在作用机制的研究进展。 The research on mitochondria has never stopped since it was discovered in 1850s. As a double membrane organelle in most eukaryotic cells, mitochondria are responsible for providing most of the ATP for body activities and are involved in several cellular activities. The number of mitochondria changes dynamically and constantly in order to meet the requirements of cells in different circumstances. Meanwhile, mitochondria can achieve morphological and functional changes through mitochondrial fusion and fission. As a healthy lifestyle, the key role of exercise is to activate peroxisome proliferator-activated receptor), coactivator l^t(PGC-lct)and induce the expression of transcription factors, and thereby increase mitochondrial protein synthesis for more mitochondria with perfect functions to improve energy metabolism. The article focuses on the regulation functions of hydorxytyrosol, reservatrol and lipoic acid on mitochondrial metabolism, including mitochondrial biogenesis, fusion and fission, in motion state as well as their potential mechanism.
作者 冯智辉
出处 《体育科研》 2013年第6期58-61,共4页 Sport Science Research
基金 国家自然科学基金(81201023 31370844)
关键词 线粒体营养素 运动 氧化应激 羟基酪醇 白藜芦醇 硫辛酸 mitochondrial nutrients exercise oxidative stress hydorxytyrosol reservatrol lipoic acid
  • 相关文献

参考文献40

  • 1Liesa M., Shirihai O. S. (2013). Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure[J]. Cell Metab, 17:491-506.
  • 2Holloszy J. O. (2008). Regulation by exercise of skeletal muscle content of mitochondria and GLUT4[J]. Jphysiol Pharmacol, 59 Suppl 7:5-18.
  • 3Dillard C J, Litov RE, Savin, WM, et al. (1978). Effects of exercise, vitamin E, and ozone on pulmonary function andlipid peroxidation[J], d Appl Physiol." Respir, enviro exerc physiol,45:927-932.,.
  • 4Powers S. K., Jackson M. J. (2008). Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production[J]. PhysiolRev,88:1243-127 6.
  • 5Kuwahara H., Horie T., Ishikawa S., Tsuda C.et al.(2010). Oxidative stress in skeletal muscle causes severe disturbance of exercise activity without muscle atrophy[J]. Free Radic Biol Med.48:1252-1262.
  • 6Aoi W., Naito Y., Yoshikawa, T. (2013). Role of oxidative stress in impaired insulin signaling associated with exercise-induced muscle damage[J]. Free Radic Biol Med,65C: 1265-1272.
  • 7Boveris A., Chance B. (1973). The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen[J]. Biochem J, 134:707-716.
  • 8Venditti P., Bari A., Di Stefano L., Di Meo S. (2007). Role of mitochondria in exercise-induced oxidative stress in skeletal muscle from hyperthyroid rats[J]. Arch Biochem Biophys, 46 3 :12-18.
  • 9Wang H. J., Pan Y. X., Wang W. Z., Zucker I. H., Wang W. (2009). NADPH oxidase-derived reactive oxygen species in skeletal muscle modulates the exercise pressor reflex[J]. JAappl Physiol, 107:450-459.
  • 10Gomez-Cabrera M. C., Borras C., Pallardo F. V., Sastre J. et al. (2005). Decreasing xanthine oxidase-mediated oxidative stress prevents useful cellular adaptations to exercise in rats[J]. J Physiol,567 : l13-120.

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部