期刊文献+

用最近邻分类方法预测多目标优化d-Pareto支配性 被引量:1

Predicting d-Pareto dominance in multi-objective optimization using nearest neighbor classification method
下载PDF
导出
摘要 为进一步提高预测精度,修改候选解间原始Pareto支配性关系,提出了d-Pareto支配性最近邻预测方法。结合多目标优化的自身特点,给出了d-Pareto支配性最近邻预测框架,并论证了d-Pareto支配性预测比Pareto支配性预测具有低平均预测错误率。同时也初步研究了d-Pareto支配性预测与多目标进化算法的交互作用。对几个经典多目标优化问题进行实验,仿真结果表明d-Pareto支配性预测具有一定的可行性和有效性。 To improve predicting accuracy further, this paper modified original Pareto dominance relation among the candidate solutions, and proposed a new method named d-Pareto dominance prediction using nearest neighbor. Combined with the characteristics of multi-objective optimization, it described the framework of d-Pareto and the conclusion that a d-Pareto dominance prediction could obtain a lower average prediction error rate comparing with Pareto demonstrated dominance prediction. Besides,it also explored the interaction between d-Pareto dominance prediction and multi-objective evolutionary algorithms. Experiments on several classic MOPs were conducted and the simulation results show that prediction of d-Pareto dominance is feasible and effective.
出处 《计算机应用研究》 CSCD 北大核心 2013年第12期3571-3575,共5页 Application Research of Computers
基金 国家自然科学基金资助项目(60975049) 湖南省自然科学基金重点资助项目(11JJ2037) 湖南省高校科技创新团队支持计划资助项目(湘教通[2012]318号)
关键词 多目标优化 最近邻分类方法 d-Pareto支配性 计算成本 multi-objective optimization nearest neighbor classification method d-Pareto dominance computation cost
  • 相关文献

参考文献22

  • 1DEB K、Multi-objective optimization using evolutionary algorithms:anintroduction,KanGAL Report Number 2011003[R].[S.I.]:IndianInstitute of Technology Kanpur,2011.
  • 2ZHOU Ai-min,QU Bo-yang,LI Hui,et al.Multiobjective evolutionaryalgorithm:a survey of the state of the art[J].Swarm and Evollitio-nary Computation,2011,1(1):32-49.
  • 3DEB K,PRATAP AtAGARWAL S,et al.A fast and elitist multi-ob-jective genetic algorithm:NSGA-II[J].IEEE Trans on Evolutio-nary Computation,2002,6(2):182-197.
  • 4ZITZLER E,LAUMANNS M,THIELE L.SPEA2:improving thestrength Pareto evolutionary algorithm[C]//Proc of EvolutionaryMethods for Design,Optimization and Control with Applications to In-dustrial Problems.Berlin:Springer-Verlag,2002:95-100.
  • 5CORNE D W,KNOWLES J D,OATES M J.The Pareto envelope-based selection algorithm for multi-objective optimization[C]//Procof Parellel Problem Solving from Nature-PPSN VI.2000:839-848.
  • 6KNOWLES J D,CORNE D W.The Pareto archived evolutionarystrategy:a new baseline algorithm for Pareto multiobjective optimiza-tion[C]//Proc of Congress on Evolutionary Computation.Piscataway,NJ:IKEE Press,1999; 98-105.
  • 7NAIN P K S,DEB K.A multi-objective search and optimization proce-dure with successive approximate models,KanGAL Report 2004012[R].[S.I.]:Indian Institute of Technology Kanpur,2004.
  • 8JIN Yao-chu,SENDOFF B.A systems approach to evolutionary multi-objective structural optimization and beyond[J].IEEE CompUtionalIntelligence Magazine,2009,4(3):62-76.
  • 9SHI L,RASHEED K.A survey of fitness approximation methods ap-plied in evolutionary algorithms[C]//Proc of Computational Intelli-gence in Expensive Optimization Problems.2010:3-28.
  • 10JIN Yao-chu.Surrogate-assisted evolutionary computation:recent ad-vances and future challenges[J]. Swarm and Evolutionary Compu-tation,2011,1(2):61-70.

二级参考文献16

  • 1J D Schaffer.Some experiments in machine learning using vector evaluated genetic algorithms:[Ph D dissertation].Nashville:Vanderbilt University,1984
  • 2D E Goldberg.Genetic Algorithms for Search,Optimization,and Machine Learning.Reading,MA:Addison-Wesley,1989
  • 3Hisashi Tamaki.Generation of a set of Pareto-optimal solutions by genetic algorithm.Trans on Society of Instrument and Control Engineers,1995,31(8):1185~1192
  • 4Brian J Ritzel,J Wayland Eheart,S Ranjithan.Using genetic algorithms to solve a multiple objective groundwater pollution containment problem.Water Resources Research,1994,30(5):1589~1603
  • 5J T Richardson,M R Palmer,G Liepins,et al.Some guidelines for genetic algorithms with penalty function.The 3rd Int'l Conf on Genetic Algorithms,Fairfax,VA,1989
  • 6Carlos M Fonseca,Peter J Fleming.Genetic algorithms for multiobjective optimization:Formulation,discussion and generalization.In:Stephanie Forrest ed.Proc of the 5th Int'l Conf on Genetic Algorithms.San Mateo,California:Morgan Kauffman Publishers,1993.416~423
  • 7D E Goldberg,K Deb.A comparison of selection schemes used in genetic algorithms.Foundations of Genetic Algorithms.San Mateo,CA:Morgan Kauffman Publishers,1991.69~93
  • 8K Deb.Evolutionary algorithms for multi-criterion optimization in engineering design.In:Kaisa Miettinen,Marko M Mkel,Pekka Neittaanmki,et al eds.Evolutionary Algorithms in Engineering and Computer Science.Chichester,UK:John Wiley & Sons,Ltd,1999.135~161
  • 9Jeffrey Horn,Nicholas Nafpliotis.Multiobjective optimization using the niched Pareto genetic algorithm.University of Illinois at Urbana-Champaign,Urbana,Tech Rep:IlliGAl Report 93005,1993
  • 10J Horn,N Nafpliotis,D E Goldberg.A niched Pareto genetic algorithm for multiobjective optimization.In:Proc of the 1st IEEE Conf on Evolutionary Computation.Piscataway,NJ:IEEE Service Center,1994.82~87

共引文献13

同被引文献7

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部