期刊文献+

自适应用户的Item-based协同过滤推荐算法 被引量:9

User-adaptive Item-based collaborative filtering recommendation algorithm
下载PDF
导出
摘要 传统Item-based协同过滤算法计算两个条目间相似性时,将每个评分视为同等重要,忽略了共评用户(对两个条目共同评分的用户)与目标用户间的相似性对条目间相似性的影响。针对此问题,提出了一种自适应用户的Item-based协同过滤算法。该算法将共评用户与目标用户的相似性作为共评用户评分重要性的权重,以实现针对不同的目标用户,为目标条目选择不同的、适合目标用户的最近邻居集,从而提高推荐准确性。实验结果表明,提出的算法可以显著提高推荐系统的推荐质量。 The traditional Item-based collaborative filtering algorithm regards every rating as equal importance when calculating the similarity between items, and ignores the impact of the similarity between co-rated users ( users co-rate both two items) and target user on the similarity between items. This paper proposed a user-adaptive hem-based collaborative filtering recommendation algorithm, in which the rating of a co-rated user on an item was weighted by the user similarity between the co-rated user and target user,in order to select different neighbors of a certain target item for different target users, and so as to improve the recommendation accuracy. The experiment results suggest that the proposed algorithm can efficiently improve the recommendation quality.
出处 《计算机应用研究》 CSCD 北大核心 2013年第12期3606-3609,共4页 Application Research of Computers
基金 中央高校基本科研业务费科研专项基金资助项目(CDJZR11090001)
关键词 推荐系统 协同过滤 Item—based 自适应用户 条目相似性 信息过载 recommender system collaborative filtering Item-based user-adaptive item similarity information overloading
  • 相关文献

参考文献14

  • 1王国霞,刘贺平.个性化推荐系统综述[J].计算机工程与应用,2012,48(7):66-76. 被引量:334
  • 2刘建国,周涛,汪秉宏.个性化推荐系统的研究进展[J].自然科学进展,2009,19(1):1-15. 被引量:435
  • 3BALABANOVIC M,SHOHAM Y.Fab:content-based,collaborativerecommendation[J].Communications of the ACM,1997,40(3):66-72.
  • 4HERLOCKER J L,KONSTAN J A,TERVEEN L G,et al.Evaluatingcollaborative filtering recommender systems[J].ACM Trans on In-formation Systems,2004,22(1):5-53.
  • 5SU X,KHOSHGOFTAAR T M.A survey of collaborative filteringtechniques[J].Advances in Artifical lntelligence,2009(4):421-445.
  • 6BOBADILLA J,SERRADILLA F,BERNAL J' A new collaborative fil-tering metric that improves the behavior of recommender systems[J].Knowledge-Based Systems,2010,23(6):520-528.
  • 7杨引霞,谢康林,朱扬勇,左子叶.电子商务网站推荐系统中关联规则推荐模型的实现[J].计算机工程,2004,30(19):57-59. 被引量:24
  • 8De CAMPOS L M,FERNANDEZ-LUNA J M,HUETE J Fyet alCombining content-based and collaborative recommendations:a hybridapproach based on Bayesian networks[J].International Journal ofApproximate Reasoning,2010,51(7):785-799.
  • 9ZHOU T,REN J,MEDO M,et al.Bipartite network projection andpersonal recommendation[J].Physical Review E,2007,76(4):6116-6123.
  • 10王茜,段双艳.一种改进的基于二部图网络结构的推荐算法[J].计算机应用研究,2013,30(3):771-774. 被引量:24

二级参考文献144

共引文献790

同被引文献64

  • 1张亚英,尤晋元.A role based coordination model in agent systems[J].Journal of Harbin Institute of Technology(New Series),2005,12(5):555-561. 被引量:2
  • 2邢春晓,高凤荣,战思南,周立柱.适应用户兴趣变化的协同过滤推荐算法[J].计算机研究与发展,2007,44(2):296-301. 被引量:148
  • 3吴颜,沈洁,顾天竺,陈晓红,李慧,张舒.协同过滤推荐系统中数据稀疏问题的解决[J].计算机应用研究,2007,24(6):94-97. 被引量:51
  • 4蔺丰奇,刘益.信息过载问题研究述评[J].情报理论与实践,2007,30(5):710-714. 被引量:62
  • 5张光卫,李德毅,李鹏,康建初,陈桂生.基于云模型的协同过滤推荐算法[J].软件学报,2007,18(10):2403-2411. 被引量:193
  • 6Dwi H Widyantoro, John Yen. Relevant Data Expansion for Learning Concept Drift from Sparsely Labeled Data [ J ]. IEEE Transactions on Knowledge and Data Engineering, 2011,23 ( 3 ) :401 - 412.
  • 7Kolter J Z, Maloof M A. Dynamic weighted majority : A new ensemble method for tracking concept drift[ C]//Proceedings Third International IEEE Conference on Data Mining,2013:123-130.
  • 8Meehee Lee, Pyungseok Choi, Yongtae Woo. A Hybrid Recommender System Combining Collaborative Filtering with Neural Network [C]// Proceedings of the Second International Conference on Adaptive Hyper- media and Adaptive Web-Based Systems, 2012 : 531 - 534.
  • 9Linden G, Smith B, York J. Amazon. corn recommendations : item-to- item collaborative filtering [ J ]. Internet Computing, IEEE, 2013,27 (1) :76 -80.
  • 10Adomavicius G, Tuzhilin A. Toward the next generation of recommender system:a survey of the state-of-the-art and possible extensions[J] . IEEE Trans on Knowledge and Data Engineering, 2005, 17(6):734-749.

引证文献9

二级引证文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部