期刊文献+

基于改进灰色神经网络的故障预测方法研究 被引量:11

Research on method of fault prediction based on improved grey neural network
下载PDF
导出
摘要 故障预测技术是电子装备预测与健康管理(PHM)领域的核心内容,对电子装备关键部件实施有效的预测是保证系统正常运行的关键。首先将灰色理论和人工神经网络算法相结合,构建灰色神经网络模型并对其进行分析;然后在此基础上通过附加动量变学习速率法对灰色神经网络的权值更新策略进行改进,提出一种基于改进灰色神经网络的故障预测模型;最后以某型脉冲测量雷达中频接收组合中的压控振荡器为例,以采集的原始频率数据为基础进行仿真验证。预测结果表明,将该预测方法应用于电子装备PHM是行之有效的,可有效提高故障预测精度。 Fault prediction technology is the core content of electronic equipment PHM, carrying out effective prediction on the key components of electronic equipment is the guarantee of system running in normal operation. Firstly, this paper built and analyzed the general grey neural network model by combining grey theory and artificial neural network. Then improved the weight updating strategy of grey neural network by the method of additional momentum and variable learning rate, and put forward a fault prediction method based on improved grey neural network model. Finally, it took a voltage controlled oscillator (VCO) of the intermediate frequency combination in a certain pulse instrumentation radar as an example, and the collected original frequency data as the basis to simulate. The results show that applying the prediction method to electronic equipment PHM can effectively improve the fault prediction accuracy.
出处 《计算机应用研究》 CSCD 北大核心 2013年第12期3625-3628,共4页 Application Research of Computers
基金 国家"十一五"装备预先研究项目(51317030104) 国家自然科学基金资助项目(60771063)
关键词 故障预测 预测与健康管理 灰色神经网络模型 附加动量变学习速率法 改进灰色神经网络 fault prediction prognostic and health management (PHM) grey neural network model additional momentum and variable learning rate method improved grey neural network
  • 相关文献

参考文献13

  • 1ANTONI J,DANIERET J,GUILLET F.Effective vibration analysisof ic engines using cyclostationarity-part I:a methodology or conditionmonitoring[J].Journal of Sound and Vibration,2002,257(5):815-837.
  • 2"十一五"通用装备保障科技信息研究成果汇编[K].[S.I.]:总装通用装备保障部科技信息办公室,2011:3-13.
  • 3DISCENZO F M,NICKERSON W,MITCHELL C E,et al.Open sys-tems architecture enables health management for next generation sys-tem monitoring and maintenance[R].[S.I.]:OSA-CBM Develop-ment Group,2001.
  • 4HENLEY S,CURRER R,SCHEUREN B,et al.Autonomic logis-tics-the support concept for the 21st century[C]//Proc of IEEE Aero-space Conference.2000:417-421.
  • 5FILEV D P,TSENG F.Novelty detection based machine health prog-nostics[C]//Proc of International Symposium on Evolving Fuzzy Sys-tems.2006:193-199.
  • 6郭阳明,蔡小斌,张宝珍,翟正军.故障预测与健康状态管理技术综述[J].计算机测量与控制,2008,16(9):1213-1216. 被引量:49
  • 7彭宇,刘大同,彭喜元.故障预测与健康管理技术综述[J].电子测量与仪器学报,2010,24(1):1-9. 被引量:242
  • 8邓聚龙.灰色系统基本方法[M].2版.武汉:华中科技大学出版社,2004:13-15.
  • 9黄大荣,黄丽芬.灰色系统理论在故障预测中的应用现状及其发展趋势[J].火炮发射与控制学报,2009,30(3):88-92. 被引量:26
  • 10阳树洪,李春贵,夏冬雪.基于灰色神经网络的入侵检测系统研究[J].计算机工程与设计,2007,28(19):4622-4624. 被引量:5

二级参考文献85

共引文献312

同被引文献107

引证文献11

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部