期刊文献+

K-Q:支持海量查询的隐私泄露检测算法

K-Q:algorithm for privacy disclosure detection supporting large number of queries
下载PDF
导出
摘要 针对推理检测需要的所有历史查询结果的数据规模较大这一问题,K-Q算法结合K-匿名模型在历史查询结果的存储规模上进行了优化,通过推理攻击模拟算法在线检测恶意查询。在真实数据集上的实验证明了K-Q算法可以自适应于查询规模的增长,在准确率和内存消耗上都明显优于已有的直接基于相关元组合并优化的T-D算法。 A key problem remained that the data set required to detect inference attack cannot all fit in memory, K-Q algo- rithm optimized the real data storage for each history query based on K-anonymization model, it detected the illegal query online through simulating the real inference attack. Experiments on real data demonstrate that K-Q algorithm can scale on query size, and perform on detect accuracy and memory consumption is better than the existed T-D algorithm which directly merge related tuples and also assure the privacy control' s granularity.
出处 《计算机应用研究》 CSCD 北大核心 2013年第12期3767-3770,共4页 Application Research of Computers
关键词 K-匿名 数据共享平台 隐私泄露检测 推理攻击 K-anonymity data sharing platform privacy disclosure inference attack
  • 相关文献

参考文献10

  • 1焉凯,何贤芒.基于局部聚类的数据匿名化算法[J].计算机应用研究,2012,29(1):148-151. 被引量:5
  • 2LI Tian-cheng,LI Ning-hui.On the tradeoff between privacy and utili-ty in data publishing[C]//Proc of the 15th ACM SIGKDD Interna-tional Conference on Knowledge Discovery and Data Mining.NewYork : ACM Press,2009:517-526.
  • 3LI Tian-cheng,LI Ning-hui,ZHANG Jian.Modeling and integratingbackground knowledge in data anonymization[C]//Proc of the 25 thIEEE International Conference on Data Engineering.Washington DC:IEEE Computer Society,2009:6-17.
  • 4王平水,王建东.匿名化隐私保护技术研究进展[J].计算机应用研究,2010,27(6):2016-2019. 被引量:10
  • 5王平水,马钦娟.隐私保护k-匿名算法研究[J].计算机工程与应用,2011,47(28):117-119. 被引量:12
  • 6YIP R,LEVITT K.Data level inference detection in database systems[C]//Proc of the Ilth IEEE Computer Security Foundations Work-shop.1998:179-189.
  • 7BRODSKY A,FARKAS C,JOJODIA S.Secure databases:constraints,inference channels,and monitoring disclosures[J],IEEE Trans OHKnowledge and Data Engineering,2000,12(6):900-919.
  • 8TRUTA T M,VINAY B.Privacy protection;P-sensitine K-anonymityproperty[C]//Proc of the 22nd International Conference on Data En-gineering Workshops.Washington DC:IEEE Computer Society,2006:94-98.
  • 9MACHANAVAJJHALA A,GEHRKE J,KIFER D,et al.L-diversity:privacy beyond K-anonymity[J].ACM Trans on Knowledge Dis-cover from Data,2007,1(1):3-16.
  • 10CUI Bin-ge,LIU Da-xin.An inference detection algorithm based onrelated tuples P-sensitive K-anonymit property[C]//Proc of the 22ndInternational Conference on Data Mining.2005:1011-1017.

二级参考文献41

  • 1SAMARATI P,SWEENEY L.Generalizing data to provide anonymity when disclosing information[C] //Proc of the 17th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems.New York:ACM Press,1998:188.
  • 2SWEENEY L.K-anonymity:a model for protecting Privacy[J].International Journal of Uncertainty,Fuzziness and Knowledge-based Systems,2002,10(5):557-570.
  • 3SWEENEY L.Achieving k-anonymity privacy protection using genera-lization and suppression[J].International Journal on Uncertainty,Fuzziness and Knowledge-based Systems,2002,10(5):571-588.
  • 4MACHANAVAJJHALA A,GEHRKE J,KIFER D.L-diversity:privacy beyond k-anonymity[J].ACM Trans on Knowledge Discove-ry from Data,2007,1(1):3.
  • 5TRUTA T,VINAY B.Privacy protection:p-sensitive k-anonymity property[C] //Proc of the 22nd International Conference on Data Engineering Workshops.Washington DC:IEEE Computer Society,2006:94-103.
  • 6WONG R,LI J,FU A,et al.(a,k)-anonymity:an enhanced k-anonymity model for privacy-preserving data publishing[C] //Proc of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York:ACM Press,2006:754-759.
  • 7ZHANG Qing,KOUDAS N,SRIVASTAVA D,et al.Aggregate query answering on anonymized tables[C] //Proc of the 23th International Conference on Data Engineering.Pisctaway,NJ:IEEE Press,2007:116-125.
  • 8LI Ning-hui,LI Tian-cheng.T-closeness:privacy beyond k-anonymity and l-diversity[C] //Proc of the 23rd International Conference on Data Engineering.Pisctaway,NJ:IEEE Press,2007:106-115.
  • 9XIAO Xiao-kui,TAO Yu-fei.Personalized privacy preservation[C] //Proc of ACM SIGMOD Conference on Management of Data.New York:ACM Press,2006:229-240.
  • 10YE Xiao-jun,ZHANG Ya-wei,LIU Ming.A personalized (a,k)-anonymity model[C] //Proc of the 9th International Conference on Web-Age Information Management.Piscataway,NJ:IEEE Press,2008:341-348.

共引文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部