期刊文献+

基于MSET方法的风电机组齿轮箱预警仿真研究 被引量:25

Wind Turbine Gearbox Prognostic Simulation Research Based on MSET Method
下载PDF
导出
摘要 风电机组常年在复杂工况下连续运行,机组对设备的可靠性等方面有很高的要求,齿轮箱重要部件的损伤和失效都会直接或间接导致机组停机,从而导致计划外的更换和维护成本。利用MSET(Multivariate State Estimation Technique)方法对风电机组的齿轮箱轴温进行状态估计,得出齿轮箱轴温的估计值。然后利用滑动窗口残差统计方法对齿轮箱轴温的估计值和实际值的残差进行分析,残差均值能显示出齿轮箱轴温的实时运行状态,当残差均值曲线超出设定的阈值区间时,系统开始预警,表明设备运行异常。仿真结果表明基于MSET方法的风电机组齿轮箱预警系统能够实时监测机组齿轮箱的运行状态。 Wind turbine has been continuous operation under complex condition, and all aspects of the unit equipment have to require high performances such as reliability. Any damage or invalidation of the gearbox important components would make fans stop working directly or indirectly, and it could produce unplanned replacement and maintenance. MEST (Multivariate State Estimation Technique) was used to carry out the state Estimation for the unit gear box bearing temperature to get the gear box bearing temperature estimated values. The sliding window residual statistical method was then used to analyze the residual between the estimated values and the actual values, the residual mean curve was then obtained which expressed the gear box bearing temperature real-time operation state. When residual mean curve went beyond set threshold value interval, the system began prognostic and indicate the equipment has fault. The simulation result shows that the gearbox prognostic system based on MSET method can monitor unit gear box operation real-time.
出处 《系统仿真学报》 CAS CSCD 北大核心 2013年第12期3009-3014,共6页 Journal of System Simulation
基金 中央高校基本科研业务费专项资金资助(12MS118)
关键词 MSET 滑动窗口统计 齿轮箱 预警 仿真 MSET sliding window statistic gearbox prognostic simulation
  • 相关文献

参考文献10

  • 1W Yang,P J Tavner,M R Wilkinson. Condition Monitoring and Fault Diagnosis of a Wind Turbine Synchronous Generator Grive Grain[J].IET Renewable Power Generation (S1752-1416),2009,(01):1-11.
  • 2Michal R Wilkinson,Fabio Spinato,Peter J Tavner. Condition Monitoring of Generators & Other Subassemblies in Wind Turbine Drive Trains[A].USA:IEEE,2007.388-392.
  • 3Lu Bin,Li Yaoyu,Wu Xin. A Review of Recent Advances in Wind Turbine Condition Monitoring and Fault Diagnosis[A].USA:IEEE,2009.1-7.
  • 4Yang Wenxian,Tavner P J,Crabtree C J. Cost-Effective Condition Monitoring for Wind Turbines[J].IEEE Trans Industrial Electronics (S0278-0046),2010,(01):263-271.
  • 5Simon J W,Xiang B J,Yang Wenxian. Condition Monitoring of the Power Output of Wind Turbine Generators using Wavelets[J].IEEE Trans on Energy Conversion (S0885-8969),2010,(03):715-721.
  • 6Yang W,Tavner P J,Wilkinson M R. Condition Monitoring and Fault Diagnosis of a Wind Turbine Synchronous Generator Drive Train[J].Renewable Power Generation (S 1752-1416),2009,(01):1-11.doi:10.1049/iet-spr:20070198.
  • 7Alan Jiang;Yinghua Zhao;Liwei Zhang.Experimental Study of Acoustic Emission Characteristics of Underwater Concrete Structures[A]{H}南京,2008252-257.
  • 8Zaher A,McArther S D J,Infield D G. Online Wind Turbine Tautly Detection Through Automated SCADA Data Analysis[J].Wind Energy (S1095-4244),2009,(06):574-593.
  • 9Hameed Z,Hong Y S,Cho Y M. Condition Monitoring and Fault Detection of Wind Turbines and Related Algorithms:a Review[J].Renewable and Sustainable Energy Reviews (S1364-0321),2009,(01):1-39.
  • 10Amirat Y,Benbouzid M,Al-Ahmar E. A Brief Status on Condition Monitoring and Fault Diagnosis in Wind Energy Conversion Systems[J].Renewable and Sustainable Energy Reviews (S1364-0321),2009,(09):2629-2636.

同被引文献166

引证文献25

二级引证文献133

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部