期刊文献+

基于模糊预测的数据复制优化模型的研究

Research on Data Replication Optimization Model Based on Fuzzy Forecasting
下载PDF
导出
摘要 云数据处理系统中广泛采用了多数据副本复制技术,以防止数据丢失,如果数据复制的份数或位置不当,就会引起数据的可用性小于用户期望的数据可用性或存储空间的浪费(如复制份数过多)。针对该问题,经研究提出了一种基于模糊预测的数据复制优化模型,该模型由模糊预测模块和复制优化模块组成。模糊预测模块以节点信息(CPU信息、节点带宽信息、内存信息和硬盘信息)作为输入,预测出节点的可用性;复制优化模块把节点的可用性和用户期望的数据可用性作为输入,计算出在满足用户期望情况下数据复制的份数和位置。提出的复制优化模型能根据云数据存储系统中数据节点可用性实现动态的优化数据复制,能获得较高的存储性价比。模拟实验中基于模糊预测的数据复制优化模型策略需要的存储空间分别是Hadoop策略的42.62%,42.84%,但文件的平均可用性可达到88.69%,90.54%,表明提出的基于模糊预测的复制模型实现了在节省存储空间的同时保证了文件可用性。 The use of multiple data copies is widespread in cloud data processing systems in case of data loss. If the number of data copies or the position of data replication is inappropriate, there' s a chance that could cause the availability of data to be unmatched the expecta- tion and a waste of storage spaces, for instance, the copy number is too high. As with this fact, a data replication optimization model based on fuzzy forecasting is presented. It consists of fuzzy forecasting and data replication optimization. The fuzzy forecasting makes use of the information of a node, which includes information of CPU, bandwidth, memory and hard drive, to forecast the availability. Replication op- timization consumes the availability of nodes and user' s expectation to calculate the number of data copies and replication position. This model could dynamically optimize data replication through the availability of nodes in a cloud data storage system, which achieves a good performance price tradeoff for data storage. Simulation experiment data replication strategy optimization model based on fuzzy prediction need storage space is Hadoop strategy respectively 42.62% ,42.84% ,while the average availability of documents can reach 88.69% and 90.54% ,showed that the replication model based on fuzzy prediction realized in saves storage space at the same time to ensure the file a- vailability.
出处 《计算机技术与发展》 2013年第12期82-85,91,共5页 Computer Technology and Development
基金 广东省自然科学基金项目(10451064101005155 S2011010001754) 广东省科技计划项目(2010B010600032)
关键词 模糊逻辑 数据复制 数据节点 可用性 fuzzy logic data replication data node usability
  • 相关文献

参考文献13

  • 1Zeng W,Zhao Y,Ou K,et al. Research on cloud storage architecture and key technologies[C]. USA:ACM,2009.
  • 2Wu J,Ping L,Ge X,et al. Cloud storage as the infrastructureof cloud computing[ C]. USA:IEEE,2010.
  • 3QianL,Luo Z,Du Y,et al. Cloud computing:An overview[ J],Cloud computing,2009,5931:626-631.
  • 4张丽娜,周润景.Matlab与自适应神经网络模糊推理系统[M].北京:电子工业出版社,2010.
  • 5Jang S H,Kim I K,Lee J S. Node availability - based conges-tion control model using fuzzy logic for computational grid[C]//Proc of FGCN. USA:IEEE,2007.
  • 6Xu J,Zhao M,Fortes J,et al. Autonomic resource managementin virtualized data centers using fuzzy logic-based approaches[J]. Cluster computing,2008,11(3) :213-227.
  • 7Xu J,Zhao M,Fortes J,et al. On the use of fuzzy modeling invirtualized data center management [ C ] //Proc of fourth inter-national conference on autonomic computing. USA: IEEE,2007.
  • 8Zhou J, Yu K,Chou C,et al. A dynamic resource broker andfuzzy logic based scheduling algorithm in grid environment[J ]. Adaptive and natural computing algorithms,2007 ( 1 ):604-613.
  • 9Wang W,Zhang H. A load balancing schedule strategy of webserver cluster[fc]//Proc of e-business and information sys-tem security. USA:IEEE,2009.
  • 10Zbigniew M, David B F.如何求解问题-现代启发式方法[M].北京:水利水电出版社,2003.

二级参考文献15

  • 1Apache Software Foundation. The apache hadoop project [ EB/OL]. [ 2010-06-20 ]. http://hadoop, apache, org/, as of 15/06/2009.
  • 2Wikipedia. Heterogeneous_network [ EB/OL ]. [ 2010-06-20 ]. http ://en. wikipedia, org/wiki/Heterogeneous_network.
  • 3Bhandarkar M, Gogate S, Bhat V. Hadoop performance tuning: a case study[ EB/OL]. [2010-06-20]. http://cloud, citris-uc, org/ system/files/private/BerkeleyPerformanceTuning, pdf.
  • 4Hadoop cluster setup [EB/OL]. [ 2010-06-20 ] . http: ff hadoop, apache, org/common/docs/current/cluster_setup, html.
  • 5Dean J, Ghemawat S. Mapreduce: simplified data processing on large clusters[ C]//Proc of OSDI. 2004: 137-150.
  • 6Chang F, Dean J, Ghemawat S, et al. B igtable: a distributed storage system for structured data [ J]. ACM Trans Comput Syst, 2005,26 (2) : 1-26.
  • 7Boulon J, Konwinski A, Qi R, et al. Chukwa, a large-scale monitoring system [ C ]//Cloud Computing and its Applications. Chicago, IL, October 2008 : 1-5.
  • 8Thusoo A, Sarma J S, Jain N, et al. Hive-A warehousing solution over a map-reduce framework [ J ]. PVLDB, 2009, 2 (2) : 1626-1629.
  • 9Hadoop. Powered by Hadoop [ EB/OL]. [ 2010-06-20 J. http : // wiki. apache, org/hadoop/FoweredBy.
  • 10Murthy A C. Speeding up Hadoop [ EB/OL]. [ 2010-06-20 ]. http ://developer. yahoo, eom/blogs/ydn/posts/2OO9/O9/hadoop_summit_ speeding_up_hadoop/.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部