摘要
提出一种等效的双重弹性波波场分离数值模拟方法,用于模拟纯纵波和纯横波分离模式的质点振动速度、位移以及散度场和旋度场,并将该方法应用于全弹性波波动方程数值模拟中.同时,详细推导双重弹性波波场分离波动方程的高阶交错网格有限差分数值计算公式及其稳定性条件、数值频散关系和完全匹配层(PML)吸收边界条件.理论分析和数值计算均表明,该方法可以实现高精度双重弹性波波场分离数值模拟,且纯纵波和纯横波得到完全分离,边界吸收效果较好.与前人工作相比,存储量和计算时间均得到有效改善,数值计算结果进一步验证了该方法的优越性.
We present an equivalent dual elastic wave separation equation, which simulates particle-velocity, pressure, divergence and curl fields in pure P- and S- modes. The method is used in full elastic wave numerical simulations. We give complete derivations of explicit high-order staggered-grid finite difference discrete equations, together with stability condition, dispersion relation and perfectly matched layer (PML) absorbing boundary condition. Theoretical analysis and numerical simulations show that pare P-waves and S-waves in final numerical results are completely separated in the method. Effect of absorbing boundary is perfect. Storage and computing time requirements are greatly reduced compared with previous works.
出处
《计算物理》
CSCD
北大核心
2013年第6期843-854,共12页
Chinese Journal of Computational Physics
基金
国家重点基础研究发展计划(973)(2009CB219307)资助项目
关键词
双重波场分离
弹性波
稳定性条件
PML吸收边界
高阶交错网格
时域有限差分
dual wavefield separation
elastic wave
stability condition
PML absorbing boundary condition
high-order staggered-grid
time-domain finite-difference