期刊文献+

基于融合核方程对药物-靶点作用预测研究

Prediction of drug-target interactions by integrated kernel function
下载PDF
导出
摘要 利用计算方法预测药物-靶点作用能够有效降低药物研发成本。本文提出一种基于支持向量机的新算法预测药物-靶点信息。该方法通过整合药物-靶点作用信息、药物分子物化特性、蛋白质序列信息,对药物-靶点作用对进行特征提取,并设计新的融合核方程,将药物分子、蛋白质分子信息映射到同一个空间,利用支持向量机对药物-靶点作用进行预测分类。10-CV交叉验证下,本文方法预测总精度为93.25%,与Van-Laarhoven高斯作用核方法相比提高了6.65%。实验结果表明,本文方法可以有效预测药物-靶点之间潜在作用。 Prediction of drug-target interactions by computational methods is an important part of drug discovery. In this paper, we propose a novel method based on support vector machine to predict drug-target interactions by integrating drug-target interaction information, biochemical properties of drugs and protein sequence similarity. By employing the integrated kernel function, drugs and targets are mapped into a unified space and predicted by support vector machine classifier. The prediction accuracy of the proposed method is 93.25%, which is 6.65% higher than that of Van-Laarhoven's Gaussian interaction profile kernels with 10-CV test. The results show that the proposed method is effective to infer the potential drug-target interactions.
作者 郝理阳 潘泉
出处 《电子设计工程》 2013年第23期24-26,30,共4页 Electronic Design Engineering
关键词 生物物理学 融合 支持向量机 药物-靶点作用 biophysics integration support vector machine drug-target interaction
  • 相关文献

参考文献15

  • 1Yamanishi Y,Araki M,Gutteridge A,et al. Prediction of drug-target interaction networks from the integration of chemical and genomic spaces[J]. Bioinformaties,2008,24(13): 232-240.
  • 2DiMasi J A,Hansen R W,Grabowski H G. The price of innovation: new estimates of drug development costs [J]. Journal of Health Economics, 2003,22 (2): 151-186.
  • 3Paul S M,Mytelka D S,Dunwiddie C T,et al. How to improve R & D productivity: the pharmaceutical industry's grand challenge[J]. Nature Reviews Drug Discovery, 2010,9 (3: 203-214.
  • 4张春霆.生物信息学的现状与展望[J].世界科技研究与发展,2000,22(6):17-20. 被引量:74
  • 5Davit B M,Nwakama P E,Buehler G J,et al. Comparing generic and innovator drugs: a review of 12 years of bioequivalence data from the United States Food and Drug Administration[J]. The Annals of pharmacotherapy, 2009,43 (10): 1583-1597.
  • 6Gtiner O F. Pharmacophore use in drug design[M]. La Line, 2000: 339-362.
  • 7perception, development, and Jolla," International University Wang R, Gao Y, Lai L. LigBuilder: A Multi-Purpose Program for Structure-Based Drug Design [J]. Journal of Molecular Modeling, 2000,6 ( 7 -8 ) :498-516.
  • 8Jacob L,Vert J P. Protein-ligand interaction prediction: an improved chemogenomics approach[J]. Bioinformatics,2008, 24( 19):2149-2156.
  • 9Rarey M,Kramer B,Lengauer T,et al. A fast flexible docking method using an incremental construction algorithm[J]. Journal of molecular biology, 1996,261 (3) :470-489.
  • 10Van-Laarhoven T,Nabuurs S B,Marchiori E. Gaussian interaction profile kernels for predicting drug-target interaction[J]. Bioinformatics, 2011,27 (21 ) :3036-3043.

共引文献73

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部