期刊文献+

基于稠密采样的海上红外目标跟踪算法 被引量:1

Visual Tracking of Infrared Object on the Sea Using Dense Sampling Features
下载PDF
导出
摘要 在红外背景下,长时间鲁棒跟踪运动目标是一个具有挑战性的问题.提出了一种基于稠密特征采样(DSIFT)并结合词袋模型与粒子滤波的算法来处理海上红外目标跟踪问题.该算法首先采用DSIFT算法对目标区域及其邻域进行稠密采样并进行特征描述,从而得到包含正负样本的特征向量,然后采用聚类算法构建视觉字典来建立有判别力的目标外观模型.在跟踪过程中,对候选区域稠密采样并用学习得到的视觉字典进行外观表示,然后计算候选区域与目标区域似然,在贝叶斯框架下使用最大后验概率方法实现对目标的准确跟踪.实验结果表明,该算法与相关算法比较,能够有效处理红外海上目标快速运动、外观变化、背景混淆、部分遮挡而导致跟踪性能下降甚至跟踪目标丢失的问题.同时在典型图像序列上,该算法也具有较好的鲁棒性. Visual tracking of infrared object in complex background on the sea is a challenging problem.In this paper,we propose a novel tracking method based on bag of features and particle filter with dense sampling.Firstly,local image patches within an object region are densely extracted by using sliding windows (DSIFT) and represented as invariant descriptors.Secondly,visual codebooks are generated by clustering algorithms such as K-means.Therefore,the object region is represented as a discriminative appearance model by the vector quantization and the visual codebook.After that,tracking can operate in a Bayesian maximum a posteriori framework.Each candidate region is represented as a distribution of codebook in descriptor space,which then is compared to that of template target model.The experiments have shown the superior performance of our method on infrared object tracking.Moreover,experiments on public benchmark sequences have demonstrated that our method can track object much better than some mainstream algorithms under circumstances of large appearance change,high speed motion,and partial occlusion.
出处 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第6期764-769,共6页 Journal of Xiamen University:Natural Science
基金 国防基础科研计划项目 高等学校博士学科点专项科研基金(20110121110020) 国防科技重点实验室基金项目
关键词 红外目标跟踪 稠密采样 词袋模型 粒子滤波 infrared object tracking dense sampling feature bag model particle filter
  • 相关文献

参考文献19

  • 1郑红,郑晨,闫秀生,陈海霞.基于SUKF与SIFT特征的红外目标跟踪算法研究[J].光电子.激光,2012,23(4):791-797. 被引量:10
  • 2Csurka G, Dance C R,Fan L, et al. Visual categorization withbags of keypoints[C] //Workshop on Statistical Learning in Computer Vision. Prague Czech Republic:ECCV,2004:1-22.
  • 3Yang F, Lu H, Chen Y W. Bag of features tracking[C]// Pattern Recognition (ICPR), 2010 20th International Conference. Istanbul : ICPR, 2004 : 153 156.
  • 4Li X, Dick A, Shen C, et al. Incremental learning of 3D- DCT compact representations for robust visual tracking [J]. Pattern Analysis and Machine Intelligence, 2013,35 (4) : 863-881.
  • 5Wang Hanzi, Suter D, Schindler K, et al. Adaptive object tracking based on an effective appearance filter[J]. Pat- tern Analysis and Machine Intelligence, 2007, 29 (9): 1661-1667.
  • 6Lowe D G. Distinctive image features from scale invariant keypoints[J]. International Journal of Computer Vision, 2004,60:91-110.
  • 7Nowak E,Jurie F, Triggs B. Sampling strategies for bag- of-features image classification computer vision[C]//EC- CV. Berlin, Germany: Springer, 2006,490-503.
  • 8Vedaldi A, Fulkerson B. VLFeat an open and portable li- brary of computer vision algorithms[C]//Proceedings of the 18th Annual ACM International Conference on Multi- media. Firenze, Italy : ACM, 2010 : 25-29.
  • 9Arulampalam M S, Maskell S, Gordon N, et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J]. Signal Processing Magazine, 2002, 50(2) :174-188.
  • 10Djurie P M, Kotecha J H, Zhang Jianqui, et al. Particle filtering[J] Signal Processing Magazine, 2003 (20)19-38.

二级参考文献15

  • 1David G. Lowe.Distinctive Image Features from Scale-Invariant Keypoints[J].International Journal of Computer Vision.2004(2)
  • 2Mihaylova L,Boel R,Hegyi A.An unscented Kalman filterfor freeway traffic estimation[].Procof the th IFACSymposium on Control in Transportation Systems.2006
  • 3Suga A,Fukuda K,Takiguchi T,et al.Object recognitionand segmentation using SIFT and graph cuts[].Procofthe th International Conference on Pattern Recognition.2008
  • 4LI Hong,WEI Yan-tao,LI Luo-qing,et al.Infrared movingtarget detection and tracking based on tensor localitypreserving projection[].Infrared Physics.2010
  • 5WANG Xin,TANG Zhen-min.Modified particle filter-basedinfrared pedestrian tracking[].Infrared Physics.2010
  • 6Yu Z J,Wei J M,Liu H T.A new adaptive maneuveringtarget tracking algorithm using artificial neural networks[].Procof the International Joint Conference on NeuralNetworks.2008
  • 7WANG Xin,TANG Zhen-min.Modified particle filter-basedinfrared pedestrian tracking[].Infrared Physics&Techn-ology.2010
  • 8Pantrigo J J,Sánchez A,Montemayor A S,et al.Multi-di-mensional visual tracking using scatter search particle fil-ter[].Pattern Recognition.2008
  • 9Julier S J.The scaled unscented transformation[].Proceedings of the American Control Conference.2002
  • 10Mikolajczyk K,Schmid C.A performance evaluation of local descriptors[].IEEE Transactions on Pattern Analysis and Machine Intelligence.2005

共引文献9

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部