摘要
图染色问题是图论研究中的重要问题之一,本文针对双外平面图G的点色数进行研究,并证明了:(1)不加剖分点时,当顶点数为6n+k(n=1,2,...)(k=1,2,3)时,χv=4;否则χv=3.(2)χv=4时,当在相同面上两端的顶点标号冲突时,若剖分点加在这个标号相对的边上时,仍然有χv=4;否则χv=3.
The graph coloring problem is one of the important problems of graph theory. The article studies the double outer pla- nar graph G of chromatic number, and proved( 1 ) Without cut points, when the number of vertices is 6n + k( n = 1,2,... ) ( k = 1,2,3 ), Xv = 4 ;or xv = 3. (2)xv = 4when the vertex labeling conflict at the ends of the same surface, if the cut points on this label relative at the edge, there are still XV = 4;or XV = 4.
出处
《枣庄学院学报》
2013年第5期63-65,共3页
Journal of Zaozhuang University
关键词
双外平面图
点染色
点色数
圈
the double outer planar graph
the Vertex coloring
the Color number
circle