摘要
The squeezing dynamics of two independent two-level atoms off-resonantly coupled to two non-Markovian reservoirs is studied by the time-convolutionless master-equation approach. We find that the squeezing of two atoms is dependent on both detuning and the non-Markovian effect. Our results show that, in the non-Markovian regime, the bigger the detuning and the stronger the non-Markovian effect are, the larger the strength of the squeezing is. And the squeezing of two atoms can be effectively protected for a long time when both the non-Markovian effect and detuning are present simultaneously. The physical mechanism is that the detuning not only can promote the feedback of information from the environment into the atomic system but also can greatly suppress the atomic decay in the non-Markovian regime.
The squeezing dynamics of two independent two-level atoms off-resonantly coupled to two non-Markovian reservoirs is studied by the time-convolutionless master-equation approach. We find that the squeezing of two atoms is dependent on both detuning and the non-Markovian effect. Our results show that, in the non-Markovian regime, the bigger the detuning and the stronger the non-Markovian effect are, the larger the strength of the squeezing is. And the squeezing of two atoms can be effectively protected for a long time when both the non-Markovian effect and detuning are present simultaneously. The physical mechanism is that the detuning not only can promote the feedback of information from the environment into the atomic system but also can greatly suppress the atomic decay in the non-Markovian regime.
基金
Project supported by the Natural Science Foundation of Hunan Province,China(Grant No.09JJ5001)
the Science and Technology Plan of Hunan Province,China(Grant No.2010FJ3148)
the National Natural Science Foundation of China(Grant No.10374025)