期刊文献+

Structure and magnetic properties of Osn (n=11~22) clusters 被引量:1

Structure and magnetic properties of Osn (n=11~22) clusters
下载PDF
导出
摘要 The structure and magnetic properties of Osn (n=11~22) clusters are systematically studied by using density functional theory (DFT). For each size, the average binding energy per atom, the second-order differences of total energies and the highest occupied molecular orbital (HOMO)–the lowest unoccupied molecular orbital (LUMO) gaps are calculated to analyze the stability of the cluster. The structures of Os14 and Os18 clusters are based on a close-packed hexagonal structure, and they have maximum stabilities, so n=14, 18 are the magic numbers. The 5d electrons play a dominant role in the chemical reaction of Osn clusters. The magnetic moments of Osn clusters are quenched around n=12, and when n=18~22 the value approximates to zero, due to the difference of electron transfer. The structure and magnetic properties of Osn (n=11~22) clusters are systematically studied by using density functional theory (DFT). For each size, the average binding energy per atom, the second-order differences of total energies and the highest occupied molecular orbital (HOMO)–the lowest unoccupied molecular orbital (LUMO) gaps are calculated to analyze the stability of the cluster. The structures of Os14 and Os18 clusters are based on a close-packed hexagonal structure, and they have maximum stabilities, so n=14, 18 are the magic numbers. The 5d electrons play a dominant role in the chemical reaction of Osn clusters. The magnetic moments of Osn clusters are quenched around n=12, and when n=18~22 the value approximates to zero, due to the difference of electron transfer.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第12期199-207,共9页 中国物理B(英文版)
基金 Project supported by the National Natural Science Foundation of China(Grant No.51072072)
关键词 density functional theory Osn clusters structure magnetic properties density functional theory Osn clusters structure magnetic properties
  • 相关文献

参考文献24

  • 1Duan H M and Zheng Q Q 2001 Phys. Lett. A 280 333.
  • 2Feng J N, Huang X R and Li Z S 1997 Chem. Phys. Lett. 276 334.
  • 3Xiao L and Wang L C 2004 J. Phys. Chem. A 108 8605.
  • 4Wang J G, Zhao J J, Ma L, Wang B L and Wang G H 2007 Phys. Lett. A 367 335.
  • 5Du J G, Sun X Y, Meng D Q, Zhang P C and Jiang G 2009 J. Chem. Phys. 131 044313.
  • 6Dyall K G 2000 J. Phys. Chem. A 104 4077.
  • 7Shafai G S, Shetty S, Krishnamurty S, Shah V and Kanhere D G 2007 J. Chem. Phys. 126 014704.
  • 8Ding X L, Li Z Y, Yang J L, Hou J G and Zhu Q S 2004 J. Chem. Phys. 121 2558.
  • 9Wang J L, Wang G H and Zhao J J 2003 Phys. Rev. A 68 013201.
  • 10Phaisangittisakul N, Paiboon K, Bovornratanaraks T and Pinsook U 2012 J. Nanopart. Res. 14 1020.

同被引文献16

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部