期刊文献+

基于频繁模式的选择性集成

Ensemble Pruning Based on Frequent Patterns
下载PDF
导出
摘要 针对集成学习方法在处理大规模数据集时具有计算复杂度高、基分类器数目多、分类精度不理想的问题,提出一种基于频繁模式的选择性集成算法.该算法利用频繁模式挖掘的原理,将未剪枝的集成分类器和样本空间映射为事务数据库,并利用布尔矩阵存储分类结果,然后从中挖掘频繁基分类器组成最终的集成分类器,达到选择性集成的目的.实验结果表明,与集成分类算法Bagging、AdaBoost、WAVE和RFW相比,该算法减小了集成分类器的规模,提高了集成分类器的分类精度和分类效率. Most ensemble learning methods have high computational complexity, excessive base classifiers and unsatisfactory classification accuracy in case of largescale data sets. This paper proposes an ensemble pruning algorithm based on frequent patterns. Using the theory of frequent patterns mining, the method maps the un-pruned ensemble classifier and corresponding sample space to a transactional database, and stores the corresponding classification results in a boolean matrix. After extracting frequent base classifiers from the Boolean matrix and composing a pruning ensemble, the algorithm gives the final pruning ensemble. Experimental results show that this algorithm reduces the number of base classifiers, improves classification accuracy and increases classification efficiency compared with ensemble algorithms of Bagging, AdaBoost, WAVE and RFW.
出处 《应用科学学报》 CAS CSCD 北大核心 2013年第6期628-632,共5页 Journal of Applied Sciences
基金 国家自然科学基金(No.61172124) 陕西省教育厅科学研究计划基金(No.12JK0739) 西安市科学计划项目基金(No.CXY1339(5)) 西安市碑林区科技计划项目基金(No.GX1308) 西安理工大学特色研究计划项目基金(No.116-211302)资助
关键词 大规模数据集 频繁模式 选择性集成 事务数据库 布尔矩阵 large-scale data set, frequent pattern, ensemble pruning, transactional database, Boolean matrix
  • 相关文献

参考文献13

  • 1DIETTERICH T a. Machine learning research: four current directions [J]. AI Magazine, 1997, 18(4): 97-136.
  • 2张春霞,张讲社.选择性集成学习算法综述[J].计算机学报,2011,34(8):1399-1410. 被引量:139
  • 3TAKEMURA A, SHIMIZU A, HAMAMOTO Z. Discrim- ination of breast tumors in ultrasonic images us- ing an ensemble classifier based on AdaBoost algo- rithm with feature selection [J]. IEEE Transactions on Medical Imaging, 2010, 20(3): 598-609.
  • 4LI Lingli. A survey of classifier in data mining [J]. Journal of Chongqing Normal University, 2011, 2s(4): 44-47.
  • 5BREIMAN L. Bagging predictors [J]. Machine Learn- ing, 1996, 24 (2): 123-140.
  • 6SCHAPIRE R E. The strength of weak learn ability [J]. Machine Learning, 1990, 5(2): 197-227.
  • 7FREUND Y, SCHAPIRE R E. A decision theoretic gen- eralization of on-line learning and an application to boosting [J]. Computer and System Sciences, 1997, 55(1): 119-139.
  • 8KIM H J, KIM H, MOON H J, AHN H S. A weight- adjusted voting algorithm for ensembles of classifiers [J]. Journal of the Korean Statistical Society, 2011, 40: 437-449.
  • 9JESUS M, JUAN J R, CESAR G O, NICLOAS G P. Ran- dom feature weights for decision tree ensemble con- struction [J]. Information Fusion, 2012, 13: 20-30.
  • 10赵强利,蒋艳凰,徐明.选择性集成算法分类与比较[J].计算机工程与科学,2012,34(2):134-138. 被引量:9

二级参考文献92

  • 1王丽丽,苏德富.基于群体智能的选择性决策树分类器集成[J].计算机技术与发展,2006,16(12):55-57. 被引量:3
  • 2Thompson S. Pruning boosted classifiers with a real valued genetic algorithm. Knowledge-Based Systems, 1999, 12(5-6): 277-284.
  • 3Zhou Z H, Tang W. Selective ensemble of decision trees// Proceedings of the 9th International Conference on Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing. Chongqing, China, 2003:476-483.
  • 4Hernandez-Lobato D, Hernandez-Lobato J M, Ruiz-Torrubiano R, Valle A. Pruning adaptive boosting ensembles by means of a genetic algorithm//Corchado et al. International Conference on Intelligent Data Engineering and Automated Learning. Berlin Heidelberg: Springer-Verlag, 2006: 322- 329.
  • 5Zhang Y, Burer S, Street W N. Ensemble pruning via semidefinite programming. Journal of Machine Learning Research, 2006, 7: 1315-1338.
  • 6Chen H H, Tino P, Yao X. Predictive ensemble pruning by expectation propagation. IEEE Transactions on Knowledge and Data Engineering, 2009, 21(7): 999-1013.
  • 7Dos Santos E M, Sahourin R, Maupin P. Overfitting cautious selection of classifier ensembles with genetic algorithms. Information Fusion, 2009, 10(2): 150-162.
  • 8Li N, Zhou Z H. Selective ensemble under regularization framework//Benediksson J A, Kittler J, Roll F. Multiple Classifier Systems. Berlin Heidelberg: Springer-Verlag, 2009:293-303.
  • 9Reid S, Grudic G. Regularized linear models in stacked generalization//Benediksson J A, Kittler J, Roli F. Multiple Classifier Systems. Berlin Heidelberg: Springer-Verlag, 2009:112-121.
  • 10Zhang L, Zhou W D. Sparse ensembles using weighted combination methods based on linear programming. Pattern Recognition, 2011, 44(1): 97-106.

共引文献152

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部