期刊文献+

多元时间序列的相似性匹配 被引量:6

Matching Similar Patterns for Multivariate Time Series
下载PDF
导出
摘要 常用多元时间序列相似性匹配方法难以在高效刻画局部形态特征的同时考虑各变量间的相关信息.针对此问题,提出一种动态窗口内多维拟合分段方法.基于序列的局部形态特征抽象出各变量维度上拟合线段的倾斜角及持续时间,组成模式表示矩阵,并借助一种多元模式距离实现序列的相似性模式匹配.与主成分分析法、基于点分布特征的匹配法对不同数据规模的数据集进行对比,验证了该方法的有效性,特别对于多变量、不等时间跨度的中等规模多元时间序列相似性匹配具有较好的效果. With ordinary methods, it is difficult to take relational information between variables while match the local shape of multivariate time series efficiently. To deal with the problem, we propose a multidimensional fitting piecewise method based on dynamic window to segment multivariate time series. Secondly, the inclina- tion angle and time span of a fitting segment in a certain variable dimension are used to construct a feature pattern matrix. A multivariate pattern distance is used to measure similarity between the series. Finally, by comparison with principal component analysis and the matching method based on point distribution for three different data sets, we obtain preferable results, showing that the proposed method is more efficient, especially for the medium sized time series with multivariate and varying time span.
出处 《应用科学学报》 CAS CSCD 北大核心 2013年第6期643-649,共7页 Journal of Applied Sciences
基金 国家自然科学基金(No.60304004)资助
关键词 多元时间序列 形态特征 模式匹配 相似性度量 动态时间弯曲 multivariate time series, shape characteristics, pattern matching, similarity measure, dynamic time warping
  • 相关文献

参考文献15

  • 1李士进,朱跃龙,张晓花,万定生.基于BORDA计数法的多元水文时间序列相似性分析[J].水利学报,2009,39(3):378-384. 被引量:19
  • 2马煜,顾晓东,汪源源.基于平均窗口平移的直方图相似性度量[J].应用科学学报,2008,26(1):28-33. 被引量:6
  • 3SINGHAL A, SEBORG D E. Clustering multivariate time series data [J]. Journal of Chemometrics, 2005, 19: 427-438.
  • 4LEHNERTZ K. Non-linear time series analysis of in- tracranial EEG recordings in patients with epilepsy- an overview [J]. International Journal of Psychophys- iology, 1999, 34: 45-52.
  • 5KRZANOWSKI W J. Between groups comparison of principal components [J]. Journal of the American Statistical Association, 1979, 74: 703-707.
  • 6管河山,姜青山,王声瑞.基于点分布特征的多元时间序列模式匹配方法[J].软件学报,2009,20(1):67-79. 被引量:39
  • 7KEOGH E, LI W, XI X P, MICHAIL V, LEE S H, PAVLOS P. Supporting exact indexing of arbitrar- ily rotated shapes and periodic time series under Euclidean and warping distance measures [J]. The VLDB Journal, 2009, 18: 611-630.
  • 8MICHAIL V, MARIOS H, DIMITRIOS G, KEOGH E. In- dexing multi-dimensional time series with support for multiple distance measures [C]//Processing of the 9th ACM SIGKDD Internaltional Conference on Knowledge Discovery and Data Mining, Washington, USA, 2003: 216-255.
  • 9BERNT D J, CLIFFORD J. Using dynamic time warp- ing to find patterns in time series [C]//Processing of the 4th International Conference of Knowledge Dis- covery and Data Mining, California, USA, 1998: 239- 241.
  • 10黄河,史忠植,郑征.基于形状特征k-d树的多维时间序列相似搜索[J].软件学报,2006,17(10):2048-2056. 被引量:11

二级参考文献40

共引文献77

同被引文献52

引证文献6

二级引证文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部