期刊文献+

Kalman滤波在刀具磨损预测模型中的应用

Application of Kalman filter in the model of tool wear prediction
下载PDF
导出
摘要 基于LS-SVM建立刀具磨损预测模型,描述铣削过程中输入向量(进给率、切削速度、主轴转速、切削深度、切削时间及磨损位置)和输出向量(刀具磨损)之间的映射关系,并引入Kalman滤波技术,建立LS-KF模型,考虑加工条件及环境变化引起的刀具磨损量的变化,结合刀具的实际磨损量更新LS-SVM的预测结果,并用该更新结果调整训练模型,以使更新后的刀具磨损量能够反映出由于加工条件及环境的变化引起的刀具磨损的变化,提高LS-SVM模型的预测精度,最后用实验验证所建立模型的预测精度。结果表明,LS-SVM模型和LS-KF模型的预测精度均较高,且LS-KF模型的预测精度更高。 In this study, the least squares support vector machines (LS-SVM) was used to establish the tool wear prediction model which described the mapping relationship between input vectors (feed rate, cutting speed, spindle speed, cutting depth, cutting time, and wear location) and output vector (tool wear). In light of the change in tool wear resulting from the change in cutting conditions and environ- ment, Kalman filter was employed to build LS-KF model, which considered the actual tool wear and updated the prediction of LS-SVM. The updated data was used to optimize the training model so as to raise the accuracy of prediction by LS-SVM model. Experiments show that both LS-SVM model and LS-KF model boast high precision yet the latter displays a higher precision than the former.
出处 《武汉科技大学学报》 CAS 2013年第6期444-450,共7页 Journal of Wuhan University of Science and Technology
基金 国家自然科学基金资助项目(50805078) 南京航空航天大学青年科技创新基金资助项目(NS2013043)
关键词 铣削 刀具磨损 LS-SVM KALMAN滤波 milling tool wear LS-SVM Kalman filter
  • 相关文献

参考文献10

  • 1Wang Z H,Yuan J T,Hu X Q,et al. Surface rough- ness prediction and cutting parameters optimization in high-speed milling A.1MnlCu using regression and genetic algorithm[-C]// 2009 International Confer- ence on Measuring Technology and Meehatronics Automation, 2009,3:334-337.
  • 2Palanisamy P, Rajendran I, Shanmugdaram S. Pre- diction of tool wear using regression and ANN mod- els in end-milling operation[J]. The International Journal of Advanced Manufacturing Technology, 2008,37:29-41.
  • 3Prakash U, Yogavardhanswamy G N, Ajit Prasad S L,et al. Tool wear prediction by regression analysis in turning A356 with 10 SiC[-C]//2011 IEEE Re- cent Advances in Intelligent Computational Systems (RAICS), 2011:682-687.
  • 4Agustin Gajate, Rodolfo E H abet, Jos6 R Alique, et al. Transductive-weighted neuru-fuzzy inference system for tool wear prediction in a turning process [C]// HAIS'09 Proceedings of the 4th International Con- ference on Hybrid Artificial Intelligence Systems, 2009:113-120.
  • 5Li Bin. A review of tool wear estimation using theo- retical analysis and numerical simulation technolo- gies[J]. International Journal of Refractory Metals and Hard Materials,2012,35:143-151.
  • 6Zhang Chen, Liu Xihui, Fang Jiwen, et al. A new tool wear estimation method based on shape map- ping in the milling process[J]. The International Journal of Advanced Manufacturing Technology, 2011,53 : 121-130.
  • 7Mahardhika Pratama, Meng Joo Er. Tool wear pre- diction using evolutionary dynamic fuzzy neural (EDFNN) network[C]//IECON 2011-37th Annual Conference on IEEE Industrial Electronics Society, 2011:4739-4744.
  • 8Suykens J A K, Vandewalle J. Least squares sup- port vector machine classifiersFJ]. Neural Process- ing Letters, 1999, 9(3): 293-300.
  • 9Kalman R E. A new approach to linear filtering and prediction problems[J]. Journal of Fluids Engineer ing,1960,82(1) :35- 45.
  • 10Zhang Jilin, Zhang Chen, Guo Song,et al. Research on tool wear detection based on machine vision in end milling process [J]. Production Engineering, 2012,6:431 -437.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部