期刊文献+

带障碍的量子粒子群聚类算法

Clustering with Obstacles Based on Quantum-behaved Particle Swarm Optimization
下载PDF
导出
摘要 典型的基于空间约束的划分聚类算法采用基于梯度下降的搜索方法,存在着易陷入局部极值和对初始值敏感的问题,因此提出带障碍的量子粒子群聚类算法。新算法重新定义了数据点绕过障碍物的距离函数,提出了粒子逃逸原则以避免聚类中心点陷入障碍物中,并且在很大程度上克服了划分聚类的缺点。实验结果证明了该算法的有效性和准确性。 T raditional clustering algorithm based on Space Constraint applies the searching method on gradient descent ,thus it is apt to fall into local extremum and be sensitive to initial parameters .There-fore ,a new clustering with obstructed distance algorithm based on quantum -behaved particle swarm optimization is proposed .The algorithm re-defines the distance function of data points by passing ob-stacles ,applies the Escaping Principle to avoid the updated cluster center particles sinking into the area of the obstacles ,and overcomes the problems of Clustering algorithm .The simulation experiments also illustrate the effectiveness and accuracy of this method .
作者 马程 郭有强
出处 《滁州学院学报》 2013年第5期35-39,共5页 Journal of Chuzhou University
基金 安徽省优秀青年人才基金项目(2012SQRL213) 安徽省自然科学基金项目(11040606M151)
关键词 障碍距离 粒子逃逸原则 量子粒子群算法 obstructed distance escaping principle of particles quantum--behaved particle swarm opti-mization
  • 相关文献

参考文献8

  • 1A. Tung,J. Hou,J. Han. Spatial Clustering in the Presence of Obstacles[M]. Proc. 17th Int'l Conf. on Data Engineer- ing,Washington: IEEE Computer Society, 2001: 359--367.
  • 2V. Estivill-- Castro, I. J. Lee. AUTOCLUST + : AutomaticClustering of Point--data Sets in the Presence of Obstacles [J]. Temporal, Spatial, and Spatio-- Temporal Data Mining, 2000,20(7) : 133--146.
  • 3Zai'ane O R,C. H. Lee. Clustering Spatial Data When Facing Physical Constraints[J]. Proc. 2nd IEEE Int'l Conf. on Data Mining. Washington: IEEE Computer Society, 2002: 737 --740.
  • 4X. Wang, C. Rostoker, H. J. HamiltorL Density-- based Spatial Clustering in the Presence of Obstacles and Facilitators[J]. The 8th European Conference on Principles and Practice of Knowl- edge Discovery in Databases,2004,32(2):446--458.
  • 5张雪萍,王家耀.带障碍约束的遗传K中心空间聚类分析[J].计算机工程,2007,33(4):168-170. 被引量:5
  • 6李晓晴,焦素敏,张雪萍,等.基于粒子群优化的带障碍约束空间聚类分析[J].计算机工程与应用,2007),28(24):5924~5927.
  • 7王纵虎,刘志镜,陈东辉.基于粒子群优化的模糊C-均值聚类算法研究[J].计算机科学,2012,39(9):166-169. 被引量:23
  • 8李朝锋,居红云,王琪.基于QPSO的模糊C均值聚类算法[J].微电子学与计算机,2008,25(7):194-197. 被引量:10

二级参考文献18

  • 1宫改云,高新波,伍忠东.FCM聚类算法中模糊加权指数m的优选方法[J].模糊系统与数学,2005,19(1):143-148. 被引量:81
  • 2张利彪,周春光,马铭,刘小华,孙彩堂.基于粒子群优化算法的模糊C-均值聚类[J].吉林大学学报(理学版),2006,44(2):217-222. 被引量:27
  • 3许磊,张凤鸣.基于PSO的模糊聚类算法[J].计算机工程与设计,2006,27(21):4128-4129. 被引量:17
  • 4张雯,杨春明,罗雪春.改进的粒子群优化算法(英文)[J].微电子学与计算机,2007,24(2):70-72. 被引量:11
  • 5王洪春,彭宏.基于模糊C-均值的增量式聚类算法[J].微电子学与计算机,2007,24(6):156-157. 被引量:22
  • 6Tung A K H,Hah J,Lakshmanan L V S,et al.Constraint-based Clustering in Large Databases[C]//Proc.of Inti.Conf.on Database Theory.2001-01:405-419.
  • 7Tung A K H,Ng R T,Lakshmanan L V S,et al.Geo-spatial Clustering with User-specified Constraints[C]//Proceedings of the International Workshop on Multimedia Data Mining,Conjunction with ACM SIGKDD Conference.2000-08-20.
  • 8Tung A K H,Hou J,Han J.Spatial Clustering in the Presence of Obstacles[C]//Proc.of Intl.Conf.on Data Engineering.2001-04.
  • 9Estivill-Castro V,Lee I J.AUTOCLUST+:Automatic Clustering of Point-data Sets in the Presence of Obstacles[C]//Proc.of Intl.Workshop on Temporal,Spatial and Spatial-temporal Data Mining,Lyon,France.2000:133-146.
  • 10Zaiane O R,Lee C H.Clustering Spatial Data When Facing Physical Constraints[C]//Proc.of the IEEE International Conf.on Data Mining.2002:737-740.

共引文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部