摘要
激光焊接偏差识别是保证激光焊接质量的关键技术,本文研究一种用于识别激光束与焊缝位置偏差的BP神经网络模型。在大功率光纤激光焊接试验条件下,利用高速红外摄像机摄取焊接区域熔池图像,分析激光束与焊缝对中及偏离所对应的红外辐射瞬态特征。通过图像处理增强熔池图像,计算熔池特征参数(熔池匙孔特征参数、匙孔质心值、热堆积效应参数)以及相对应的焊缝与激光束之间的偏差值,将其输入所设计的神经网络进行网络权值参数的训练,建立基于BP神经网络且具有一定环境适应能力的焊缝偏差模型。试验结果表明,该模型能够反映熔池特征参数与焊缝偏差之间的规律,可实现较精确的焊缝偏差识别。
出处
《现代焊接》
2013年第12期22-27,共6页
MODERN WELDING
基金
国家自然科学基金(批准号:51175095)
广东省自然科学基金(批准号:10251009001000001,9151009001000020)
高等学校博士学科点专项科研基金(批准号:20104420110001)资助