期刊文献+

钢桁架梁桥结构两层面承载力分析和优化 被引量:4

Two-level Safety Evaluation and Structural Optimization of Steel Truss Bridge
下载PDF
导出
摘要 基于弹性模量缩减法建立了钢桁架梁桥构件安全系数和结构整体安全系数的便捷计算方法,进而提出了结构两层面安全分析和优化方法。首先引入广义屈服准则考虑组合内力作用,根据能量守恒原则确定单元弹性模量缩减策略,利用线弹性有限元法开展迭代计算,求得各迭代步单元承载比,利用迭代首步和末步结果分别确定钢桁架梁桥构件层面和结构层面的安全系数,根据迭代过程各单元承载比的变化,识别高承载构件和低承载构件,据此开展钢桁架梁桥两层面安全分析。结合两层面安全系数之间的定量关系,通过调整高承载和低承载构件的截面强度,使钢桁架梁桥的承载状态和材料消耗得到优化。算例分析表明,该方法具有较高的计算精度,而且能够通过线弹性方法实现复杂结构的安全分析与结构优化,避免了繁琐的非线性分析和优化计算过程。 A robust method for determining the component safety factor and structural safety factor of steel truss bridge is developed based on elastic modulus reduction method (EMRM). A procedure of two-level safety analysis and structural optimization is presented by means of the linear FEA iteration and the generalized yield criterion to take multiple internal forces into consideration. The strategy of elastic modulus adjustment is derived according to the principle of conversation of energy. The element bearing ratio (EBR) in every step can be obtained, and the first and last EBRs are employed to determine component safety factor and the structural safety factor for two-level structural safety evaluation of steel truss bridge. Those components with higher or lower EBR than the referenced EBR can be identified. By taking the quantitative relationship of the two level safety factors, a structural optimization scheme with better distribution of the EBR and saving material consumption can be achieved by adjusting the sectional strength of components with higher and lower EBR. Numerical examples show that the proposed method is promising with satisfying accuracy. The analysis of structural safety and optimization can be implemented by using the linear iteration while complicated nonlinear analysis in classical scheme is avoided.
出处 《土木建筑与环境工程》 CSCD 北大核心 2013年第6期51-57,共7页 Journal of Civil,Architectural & Environment Engineering
基金 国家自然科学基金(51168003 51169003) 广西自然科学基金重大项目(2012GXNSFEA53002) 主席基金项目(2010GXNSFD169008)
关键词 钢桁架梁桥 两层面安全分析 结构优化 弹性模量缩减法 广义屈服准则 steel truss bridge two level safety evaluation structural optimization elastic modulus reduction method generalized yield criterion
  • 相关文献

参考文献2

二级参考文献8

  • 1Marriott D L. Evaluation of deformation or load control of stress under inelastic conditions using elastic finite element stress analysis[J].ASME Pressure Vessel Technology Conference, Pittsburgh, 1988, (136) : 3-9.
  • 2Seshadri R, Fernando C P D. Limit loads of mechanical components and structures using the GLOSS R- node method [J]. Journal of Pressure Vessel Technology, 1992, (114):201-208.
  • 3Mackenzie D, Boyle J T, Nadarajah C. Simple bounds on limit loads by elastic finite element analysis [J]. Journal of Pressure Vessel Technology, 1993, (115): 27-31.
  • 4Yang P, Liu Y, Ohtake Y, et al. Limit analysis based on a modified elastic compensation method for nozzleto-cylinder junctions [J], International Journal of Pressure Vessels and Piping, 2005, 82(10): 770-776.
  • 5Chen L J, Liu Y H, Yang P, et al. Limit analysis of structures containing flaws based on a modified elastic compensation method[J].European Journal of Mechanics-A/Solids, 2008, 27(2): 195-209.
  • 6Adibi-Asl R, Seshadri R. Local limit-load analysis using mβ method [J]. Journal of Pressure Vessel Technology, 2007,(129): 296-305.
  • 7Marin-Artieda C C, Dargush G F. Approximate limit load evaluation of structural frames using linear elastic analysis [J]. Engineering Structures, 2007, 29 (3) : 296-304.
  • 8Gendy A S, Saleeb A F. Generalized yield surface representations in the elastic-plastic three-dimensional analysis of frames[J]. Computers & Structures, 1993, 49(2): 351-362.

共引文献30

同被引文献56

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部