期刊文献+

疲劳可靠度分析的概率密度演化方法 被引量:4

Fatigue Reliability Analysis Based on Probability Density Evolution Method
下载PDF
导出
摘要 基于概率守恒原理,推导出疲劳损伤和随机参数联合概率密度函数服从的演化方程。据此计算的随机疲劳损伤概率密度曲面和累积概率分布函数等值线可以给出疲劳损伤概率结构的演化规律,并用以分析给定损伤阈值的疲劳可靠度。常幅疲劳可靠度的数值解与试验结果吻合良好。给定二级载荷各自的常幅疲劳寿命概率分布参数,根据Miner准则可以较好地预测二级低高加载变幅疲劳可靠度。 Based on the probability conservation principle, a joint probability density evolution equation of random parameters and fatigue damage is derived. Probability density evolution surface and cumulative probability isoline of fatigue damage in term of the evolution equation can be used to predict the probability distribution of fatigue damage and fatigue reliability with a given damage threshold. The numerical solution of fatigue reliability for a constant-amplitude test has a good agreement with the experimental result. For a variable-amplitude fatigue test, the computation results, which are calculated according to probability parameters of two constant-amplitude fatigue life tests and Miner's rule, are also in good agreement with the experimental results.
作者 徐亚洲
出处 《土木建筑与环境工程》 CSCD 北大核心 2013年第6期67-72,共6页 Journal of Civil,Architectural & Environment Engineering
基金 国家自然科学基金(51208410)
关键词 疲劳 损伤 可靠度 概率密度演化 fatigue damage reliability probability density evolution method
  • 相关文献

参考文献24

  • 1Guangwei M. The committee on fatigue and fracture reliability of the committee on structural safety and reliability of the structural division [J]. Journal of the Structural Division, 1982, 108 : 3-23.
  • 2Svensson T. Prediction uncertainties at variable amplitude fatigue [J]. International Journal of Fatigue, 1997, 17295-302.
  • 3Boehm F, Lewis E E. A stress-strength interference approach to reliability analysis of ceramics.. Part I- fast fracture [J]. Probabilistic Engineering Mechanics, 1992, 7(1): 1-8.
  • 4Liu W K, Chen Y, Belytsehko T, et al. Threereliability methods for fatigue crack growth E J ] Engineering Fracture Mechanics, 1996, 53 (5) : 733 752.
  • 5Oh K P. A diffusion model for fatigue crack growth [J]. Proceedings of the Royal Society A1979,367 47- 58.
  • 6Leonel E D, Chateauneuf A, Venturini W S, et al. Coupled reliability and boundary element model for probabilistic fatigue life assessment in mixed mode crack propagation[ J]. International Journal o{ Fatigue, 2010, 32:1823-1834.
  • 7Xiang Y B, Liu Y M. Application of inverse first-order reliability method for probabilistic fatigue life prediction [J]. Probabilistic Engineering Mechanics, 2011, 26.. 148-156.
  • 8Liao M, Xu X F, Yang Q X. Cumulative fatigue damage dynamic interference statistical model E J], International Journal of Fatigue, 1995, 17 (8): 559- 566.
  • 9倪侃,高镇同.疲劳可靠性二维概率MINER准则[J].固体力学学报,1996,17(4):365-371. 被引量:16
  • 10Le X B, Peterson M L. A method for fatigue based reliability when the loading of a component is unknown [J]. International Journal of Fatigue, 1999, 21 (6).. 603-610.

二级参考文献36

  • 1倪侃.随机变幅加载下疲劳强度可靠性分析[J].上海交通大学学报,1996,30(2):23-29. 被引量:6
  • 2Wang Chunsheng, Chen Airong, Chen Weizhen, et al. Application of probabilistic fracture mechanics in evaluation of existing riveted bridges [ J ]. Journal of Bridge Structures, 2006, 2 (4) : 223-232.
  • 3Jiao G T. Reliability analysis of crack growth under random loading considering model updating [ D ]. Trondheim: Norwegian Institute of Technology, 1989.
  • 4Madsen H O. Random fatigue crack growth and inspection [ C]//Proceedings of the 4th International Conference on Structural Safety Reliability. Kobe, Japan, 1985 : 475-484.
  • 5Zhao Zhengwei, Haldar A, Breen F L. Fatigue-reliability updating through inspections of steel bridges [ J ]. Journal of Structural Engineering, ASCE, 1994,120(5) : 1624-1642.
  • 6Zhao Zhengwei, Haldar A. Bridge fatigue damage evaluation and updating using non-destructive inspections [ J ]. Engineering Fracture Mechanics, 1996,53 (5) :775-788.
  • 7Zhang Ruoxue, Mahadevan S. Fatigue reliability analysis using nondestructive inspection [ J ]. Journal of Structural Engineering, ASCE, 2001,127 (8) :957-965.
  • 8Zhang Ruoxue, Mahadevan S. Model uncertainty and Bayesian updating in reliability-based inspection [ J ]. Structural Safety, 2000,22( 2 ) : 145-160.
  • 9Righiniotis T D. Effects of increasing traffic loads on the fatigue reliability of a typical welded bridge detail [ J ]. International Journal of Fatigue, 2006, 28 ( 8 ) : 873-880.
  • 10Dau G J. Ultrasonic sizing capacity of IGSCC and its relation to flaw evaluation procedures [ R ]. Charlotte: Electric Power Research Institude, 1983.

共引文献89

同被引文献34

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部