期刊文献+

小区域混合大跨度数据分类方程的数学稳定性研究

Small Area Mixed Long-span Data Classification Equation of Stability Study
下载PDF
导出
摘要 在数学分类问题中,分类方程的稳定性至关重要,当前的数学分类方程对小区域混合大跨度数据集进行分类的过程中,会产生数据混合和波动问题,存在较大的随机性和偏差,无法确保数据分类方程的稳定性。在原有自调节数学分类方程对小区域混合大跨度数据进行分类的基础上,获取该种数据的分类判决方程,采用非线性微分分析方法获取数据分类方程的常数特解,计算方程的积分曲线走向图,用于加强不同小区域混合大跨度数据分类方程解的稳定性。实验结果说明该种方法对小区域混合大跨度数据进行分类的稳定性控制效率和精度都优于传统分类方程,具有较强的数据分类稳定性,取得了令人满意的效果。 To improve the original classification of mathematical equations, the original self adjustment classification support vector machine (SVM) classification of mathematical equations for small area classified on the basis of the large span data to obtain this data classification decision equation, nonlinear differential analysis method is used to obtain constant special solution of the equation, the calculation equation of integral curve figure, strengthen different small area mixed stability of long-span data classification equations. Experimental results show that the approach of small area mixed long-span data to classify the stability of the control is better than the traditional classification precision and efficiency equation, with strong stability data classification, satisfactory results have been achieved.
作者 辛向红
出处 《科技通报》 北大核心 2013年第11期41-44,共4页 Bulletin of Science and Technology
关键词 小区域混合 大跨度数据 非线性微分 稳定性 small area mixed large span data nonlinear differential the stability of
  • 相关文献

参考文献4

二级参考文献15

  • 1莫宏伟,吕淑萍,管凤旭,徐立芳,马忠丽,王辉.基于人工免疫系统的数据挖掘技术原理与应用[J].计算机工程与应用,2004,40(14):28-33. 被引量:10
  • 2莫宏伟,吕淑萍,管凤旭,徐立芳,叶秀芬,马忠丽,王辉.基于人工免疫网络记忆的新型分类器研究[J].计算机工程与应用,2004,40(36):28-32. 被引量:17
  • 3陈云坤,赵平.Hermite正定矩阵的推广及其性质[J].贵州科学,2006,24(2):10-12. 被引量:5
  • 4Hofmeyr S A,Forrest S.Immunity by Design:An Artificial Immune System[C]//Proc of GECCO' 99.USA:[s.n.],1999:289-296.
  • 5Hofmeyr S A,Foreest S.Architecture for an Artificial Immune System[C]//submitted to Evolutionary Computation.[s.l.]:[s.n.],2000.
  • 6Timmis J,Neal M,Hunt J.An artificial immune system for data analysis[J].Biosystems,2000,55(1/3):143-150.
  • 7Timmis J,Neal M.A resource limited artificial immune system for data analysis[J].Knowlege-Based System,2001(14):121-130.
  • 8Bernaschi M,Castiglione F,Sucdi S.A High performance simulator of the Immune Response[J].Future Generation Computer Systems,1999,15:333-342.
  • 9Hightower R H,Forrrest S,Perelson A S.The Baldwin Effect in the Immune System:Learning by Somatic Hypermutation[C]//Belew R K,Mitchell M.In Adaptive Individuals in Evolving Populations,Santa Fe Institute Studies in the Sciences of Complexity.Reading,MA:Addison-Wesley,1996:159 -167.
  • 10Carter J H.The Immune System as a Model for Pattern Recognition and Classification[J].The American Medical Informatics Association,2000,7 (1):28-41.

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部