期刊文献+

股票资产组合VaR研究——基于混合D藤Copula模型 被引量:4

Analysis of Stock Portfolio VaR——Based on Mixed D-vines Copula Model
下载PDF
导出
摘要 本文在对上证市场五种股票资产组合的风险分析中以VaR作为风险度量指标,采用基于Pair Copula高维建模理论的混合D藤Copula模型,建立了反应多个资产组合相关结构的联合分布模型。该模型对传统D藤Copula建模方法作了进一步的改进,通过一定的选择标准,确定了D藤中每个Pair Copula函数的最优函数族,这样使得所建立的模型不仅考虑到了资产维数的影响,而且还能捕捉到组合内部因子间相关结构的差异性,从而改进后的模型能更好地描述资产组合的相关结构,并且能更精确地反映资产组合收益的实际分布。最后,以混合D藤Copula模型为基础,利用Monte Carlo方法计算了上证市场五种股票资产组合的VaR,并通过实证研究进一步证明了该模型的有效性。 A mixed D-vines copula model based on Pair Copula Constructions method was used to construct the joint distri-bution function of dependency for studying risk of a portfolio of five stocks in Shanghai Stock Exchange by VaR. The model im-proves on traditional D-vines method and chooses the best families of copula functions for every Pair Copula by a rule. It not only takes into account of the impact of dimensions, but also can capture the difference of the correlation among portfolio factors, so it can describe the dependence structure of the multiple asset returns better and also can reflect the actual distribution of the portfo-lio's returns more precisely. Based on the mixed D-vines copula models , we apply the Monte Carlo methodology to study VaR of a portfolio of five stock assets in Shanghai Stock Exchange , and the validity of the model is proved by empirical analysis.
出处 《技术经济与管理研究》 2013年第12期82-86,共5页 Journal of Technical Economics & Management
基金 国家自然科学基金项目(71071111)
关键词 PAIR COPULA 混合D藤 蒙特卡洛 VAR 资产组合 股票资产 Pair copula Mixed D-vines Monte carlo VaR The portfolio Stock assets
  • 相关文献

参考文献12

  • 1张金清,李徐.资产组合的集成风险度量及其应用——基于最优拟合Copula函数的VaR方法[J].系统工程理论与实践,2008,28(6):14-21. 被引量:40
  • 2陈德胜,冯宗宪.资产组合信用风险度量技术比较研究——基于VAR[J].财经问题研究,2005(2):38-43. 被引量:3
  • 3[美]本杰明·格雷厄姆(BenjaminGraham),[美]戴维·多德(DavidDodd)著,邱巍等译.证券分析[M]. 海南出版社, 1999
  • 4Aleksey Min,Claudia Czado.SCOMDY models based on pair-copula constructions with application to exchange rates[J].Computational Statistics and Data Analysis.2012
  • 5Kjersti Aas,Claudia Czado,Arnoldo Frigessi,Henrik Bakken.Pair-copula constructions of multiple dependence[J].Insurance Mathematics and Economics.2007(2)
  • 6Tim Bedford,Roger M. Cooke.Probability Density Decomposition for Conditionally Dependent Random Variables Modeled by Vines[J].Annals of Mathematics and Artificial Intelligence (-).2001(1-4)
  • 7Tim Bedford,Roger M. Cooke.Vines--a new graphical model for dependent random variables[].The Annals of Statistics.2002
  • 8Sklar A.Fonctions de repartition a’n dimensions et leurs marges[]..1959
  • 9Joe H."Families of m-variate Distributions with Given Margins and m (m-1)/2 Bivariate Dependence Parameters"[].Distributions with Fixed Marginals and Related Topics.1996
  • 10Brechmann,E.Truncated and simplified regular vines and their applications[]..2010

二级参考文献29

  • 1吴振翔,陈敏,叶五一,缪柏其.基于Copula-GARCH的投资组合风险分析[J].系统工程理论与实践,2006,26(3):45-52. 被引量:85
  • 2史道济,阮明恕,王毓娥.多元极值分布随机向量的抽样方法[J].应用概率统计,1997,13(1):75-80. 被引量:28
  • 3Patricia Jackson,William Perraudin.regulatory implications of Credit risk Modeling[J].Journal of Banking&Finance,2004,(24):1-14.
  • 4J.P.Morgan.Introduction on Credit Metrics[R].1997.
  • 5[7] Merton,R.On the Pricing of Corporate debt:The risk structure of interest rates[J].Journal of Finance,1914.28.
  • 6Boudoukh,J.M.Richardson and R.Whitelaw.Expet the Worst[J].Risk Magazine,1995,(9):101-105.
  • 7Carty,L.V.,and D.Lieberman.Defaulted Bank Loan Recoveries[R].Moodys Investors Service,Global Credit Research(Special report),1996.
  • 8Crouhy,M.,and R.Mark.A Comparative Analysis of Current Credit Risk Models[R].Paper Presented at the Bank of England Conference on Credit Risk Modelling and Regulatory Implicatins,London,1998.
  • 9KMV Corporation.Credit Monitor Overview[R].1993.
  • 10Gordy,M.A comparative anatomy of credit risk models[J].Journal of Banking and Finance,2004,(24):119-149.

共引文献41

同被引文献36

  • 1孙元章,吴俊,李国杰.风力发电对电力系统的影响(英文)[J].电网技术,2007,31(20):55-62. 被引量:184
  • 2Bedford T, Cooke R M. Vines: A new graphical model for dependent random variables [ J ].Annals of Statistics, 2002:1031 - 1068.
  • 3Aas K, Czado C, Frigessi A, et al. Pair-copula constructions of multiple dependence[ J] .Insurance: Mathematics and eco- nomics, 2009, 44(2) :182-198.
  • 4Maya L, Albeiro R, Gomez - Gonzalez J E, et al. Latin American exchange rate dependencies: A regular vine copula ap- proach[J].Contemporary Economic Policy, 2015,33(3): 535-549.
  • 5Heinen A, Valdesogo A. Asymmetric CAPM dependence for large dimensions: The canonical vine autoregressive copula model [ J ].Available at SSRN 1297506, 2008.
  • 6Brechmann E C, Czado C. Risk management with high-dimensional vine copulas: An analysis of the Euro Stoxx 50[ J] .Sta- tistics & Risk Modeling, 2013,30(4) : 307-342.
  • 7Patton A J. Modelling asymmetric exchange rate dependence[ J ] .International economic review, 2006,47 (2) :527-556.
  • 8Hafner C M, Reznikova O. Efficient estimation of a semiparametric dynamic copula model [ J ]. Computational Statistics & Data Analysis, 2010, 54(11) : 2609-2627.
  • 9Joe H. Multivariate models and multivariate dependence concepts[ M] .CRC Press, 1997.
  • 10文辉.莫恐惧VIX指数[N].期货日报,2010-03-30(004).

引证文献4

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部