期刊文献+

牛血清白蛋白与十二烷基硫酸钠作用的机理 被引量:6

Mechanism of Interaction between Bovine Serum Albumin and Sodium Dodecyl Sulfate
下载PDF
导出
摘要 利用电动势法得到了牛血清白蛋白(BSA)与十二烷基硫酸钠(SDS)相互作用的结合等温线.通过四阶导数紫外光谱法和荧光光谱法研究了相互作用过程中芳香族氨基酸残基微环境极性的变化.通过研究发现,随着SDS浓度的逐渐增大,SDS在BSA上的平均结合数(ν)逐渐增大,色氨酸(Trp)残基所处微环境的极性在减弱后保持基本不变,酪氨酸残基所处微环境的极性在明显增强后稍有减弱,苯丙氨酸残基所处微环境的极性略有增强.结果表明,当ν由0增大到14时,SDS主要结合在BSA的Trp-213附近并逐渐形成聚集体,从而诱导BSA由结构域IIA开始逐渐展开.此后,SDS呈正协同作用的特点与BSA结合,ν急剧增大.当ν约为302时,SDS在BSA上的结合基本达到饱和,BSA的构象趋于稳定. The binding isotherms of the interaction between bovine serum albumin (BSA) and sodium dodecyl sulfate (SDS) were obtained using electromotive force measurements. Changes in the microenvironmental polarity of aromatic amino acid residues during the interaction were studied using fourth-derivative ultraviolet spectroscopy and fluorescence spectroscopy. The average number (v) of SDS molecules bound to BSA increased with increasing SDS concentration. The polarity of tryptophan (Trp) residues decreased gradually and then remained almost constant. The polarity of tyrosine residues increased significantly and then decreased a little. The polarity of phenylalanine residues increased very slightly. The results show that SDS molecules bind to BSA in the vicinity of Trp-213 when v gradually increases from 0 to 14. BSA unfolds from domain IIA, induced by SDS aggregates formed near Trp-213. The v value then increases rapidly as a result of positive cooperative binding. When the v value reaches about 302, saturation binding is achieved and the BSA conformation remains almost unchanged.
出处 《物理化学学报》 SCIE CAS CSCD 北大核心 2013年第12期2639-2646,共8页 Acta Physico-Chimica Sinica
基金 国家自然科学基金(31100067)资助项目~~
关键词 电动势 四阶导数紫外光谱 荧光光谱 芳香族氨基酸残基 微环境 极性 结合位点 Electromotive force Fourth-derivative ultraviolet spectroscopy Fluorescence spectroscopy Aromatic amino acid residue Microenvironment Polarity Binding site
  • 相关文献

参考文献112

  • 1Jones, M. N.; Skinner, H. A.; Tipping, E. Biochem. J. 1975, 147, 229.
  • 2Takeda, K.; Miura, M.; Takagi, T. J. Colloid Interface Sci. 1981, 82, 38. doi: 10.1016/0021-9797(81)90121-1.
  • 3Dixit, N.; Zeng, D. L.; Kalonia, D. S. Int. J. Pharm. 2012, 439, 317. doi: 10.1016/j.ijpharm.2012.09.013.
  • 4Ge,Y. S.; Tai, S. X.; Xu, Z. Q.; Lai, L.; Tian, F. F.; Li, D. W.; Jiang, F. L.; Liu, Y.; Gao, Z. N. Langmuir 2012, 28, 5913. doi: 10.1021/la204212s.
  • 5Pi, Y.; Shang, Y.; Peng, C.; Liu, H.; Hu, Y.; Jiang, J. Biopolymers 2006, 83, 243.
  • 6De, S.; Girigoswami, A.; Das, S. J. Colloid Interface Sci. 2005, 285, 562. doi: 10.1016/j.jcis.2004.12.022.
  • 7Blanco, E.; Messina, P.; Ruso, J. M.; Prieto, G.; Sarmiento, F. J. Phys. Chem. B 2006, 110, 11369. doi: 10.1021/jp060795h.
  • 8Peyre, V.; Lair, V.; André, V.; Maire, G.; Kragh-Hansen, U.; Maire, M.; M?ller, J. V. Langmuir 2005, 21, 8865. doi: 10.1021/la0507232.
  • 9Rafati, A. A.; Ghasemian, E. J. Mol. Liq. 2009, 144, 131. doi: 10.1016/j.molliq.2008.10.010.
  • 10Bordbarb, A. K.; Taheri-Kafrani, A. Colloids Surf. B 2007, 55, 84. doi: 10.1016/j.colsurfb.2006.11.012.

二级参考文献837

共引文献484

同被引文献240

引证文献6

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部