期刊文献+

缸盖冷却水腔内沸腾临界热流数值模型 被引量:1

Numerical Model of Boiling Critical Heat Flux in Cylinder-Head Water Jacket
下载PDF
导出
摘要 为了提前预测发动机缸盖冷却水腔内沸腾临界热流点的位置,拓展沸腾换热使用范围,基于分区渐进沸腾传热模型并联立临界热流气泡聚集模型,建立一适用于分析判断冷却水腔内部复杂几何流道的沸腾临界热流数学模型,最后制定了一评估沸腾传热安全系数.将其应用于6缸车用天然气发动机缸盖冷却水腔内完成流固耦合沸腾传热数值计算,结果表明:使用该计算模型能够描述出水腔内的沸腾传热过程,其计算温度场与试验测量结果吻合较好;同时能够判断出冷却水腔内部各区域沸腾状态分布情况,提前预测沸腾传热恶化临界点位置,为缸盖冷却水腔内实现合理利用沸腾传热提供理论依据. To forecast the position of boiling critical heat flux point in the cooling water jacket of engine cylinder head, and to expand the usable range of boiling heat transfer, a numerical mathematical model was established to analyze and evaluate the boiling critical heat flux of the complicated geometrical chan- nels in the cooling water jacket of cylinder head based on the partition and progressive boiling heat transfer model combining with bubbles aggregation model of critical heat flux. A safety coefficient was formulated to evaluate the boiling heat transfer. The model was applied to the cooling jacket of six-cylinder engine cylinder head and made the numerical calculation with fluid-solid conjugate boiling heat transfer method. Research result shows that calculation model can describe the boiling heat transfer process of water jacket. The calculated temperature field agrees well with experimental measurement. Meanwhile, distribution of boiling state in all areas of cooling jacket can be understood, through which the position of critical point of boiling heat transfer deterioration can be forecasted in advance. Theoretical study provides guidance to structural design of cooling water jacket of cylinder head.
出处 《内燃机学报》 EI CAS CSCD 北大核心 2013年第6期543-549,共7页 Transactions of Csice
基金 国家科技部"863"计划资助项目(2008AA11A121)
关键词 缸盖 冷却水腔 临界热流 沸腾传热 模型 cylinder head water jacket critical heat flux boiling heat transfer models
  • 相关文献

参考文献11

  • 1Norris P M, Wepfer W, Hoag K L, et al. Experimentaland analytical studies of cylinder head cooling [C]. SAEPaper 931122, 1993.
  • 2Robinson K,Hawley J G, Campbell N A F. Experimen-tal and modelling aspects of flow boiling heat transfer forapplication to internal combustion engines [J]. Proceed-ings of the Institution of Mechanical Engineers, PartD : Journal of Automobile Engineering,2003,217(10): 877-889.
  • 3Robinson K, Campbell N A F,Hawley J G,et al. Areview of precision engine cooling [C]. SAE Paper 1999-01-0578, 1999.
  • 4Steiner H,Kobor A,Gebhard L. A wall heat transfermodel for subcooled boiling flow[J]. International Jour-nal of Heat and Mass Transfer, 2005,48(19/20):4161-4173.
  • 5李智,黄荣华,王兆文,丁红元.内燃机冷却水腔内沸腾传热数值模型研究[J].内燃机学报,2011,29(3):270-275. 被引量:7
  • 6Li Z,Huang R H, Wang Z W. Subcooled boiling heattransfer modelling for internal combustion engine appli-cations [J] .Proceedings of the Institution of MechanicalEngineers,Part D : Journal of Automobile Engineer-ing, 2012,226(3) : 301-311.
  • 7Collier J G T J. Convective boiling and condensa-tion [M]. Oxford : Oxford Engineering Science Series,1996: 228-324.
  • 8Launder B E, Spalding D B. The numerical computationof turbulent flows [J]. Computer Methods in AppliedMechanics and Engineering, 1974, 3(2): 269-289.
  • 9Rohsenow W M. Method of correlating heat transfer datafor surface boiling of liquid[R]. Boston, MA,USA:ASME, 1986.
  • 10Ivey H J,Morris. On the relevance of vapor-liquid ex-change mechanisms for subcooled boiling heat transfer athigh pressure [R]. UK Rep AEEW-R-137,Winfrith,1962.

二级参考文献13

  • 1Hawley J G, Wilson M, Campbell N A F, et al. Predicting boiling heat transfer using computational fluid dynamics [J]. Proceedings of the Institution of Mechanical Engineers,Part D, Automobile Engineering,2004, 218(D5): 509-520.
  • 2Dong F, Fan Q, Cai Y, et al. Numerical simulation of boiling heat transfer in water jacket of DI engine[C]. SAE Paper 2010-01-0262, 2010.
  • 3Kandlikar S G. Heat transfer characteristics in partial boiling, fully developed boiling, and significant void flow regions of subcooled flow boiling[J]. Journal of Heat Transfer, 1998, 120(2): 395-401.
  • 4Chen J C. A correlation for boiling heat transfer to saturated fluids in convection flow [J]. Industrial and Engineering Chemistry Process Design and Development, 1966, 5(3): 322-329.
  • 5Steiner D, Taborek J. Flow boiling heat transfer in vertical tubes correlated by an asymptotic model[Jl. Heat Transfer Engineering, 1992, 13 (2) 43-69.
  • 6Steiner H, Kobor A, Gebhard L. A wall heat transfer model for subcooled boiling flow [J]. International Journal of Heat and Mass Transfer, 2005, 48 (19): 4161- 4173.
  • 7Ramstorfer F, Steiner H, Brenn G, et al. Subcooled boiling flow heat transfer from plain and enhanced surfaces in automotive applications[J].Journal of Heat Transfer, 2008, 130(1): 5011-5019.
  • 8Prodanovic V, Fraser D, Salcudean M. On the transition from partial to fully developed subcooled flow boiling[J].International Journal of Heat and Mass Transfer, 2002, 45(24): 4727-4738.
  • 9Warrier G R, Dhir V K. Heat transfer and wall heat flux partitioning during subcooled flow nucleate boiling-a review[J]. Journal of Heat Transfer, 2006, 128(12) : 1243-1256.
  • 10Kandlikar S G, Bulut M. An experimental investigation on flow boiling of ethylene-glycol/water mixtures[J].Journal of Heat Transfer, 2003, 125 (2) 317-325.

共引文献6

同被引文献3

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部