摘要
针对现有系统过滤算法在用户兴趣、数据稀疏性方面的不足,提出一种基于用户兴趣的协同过滤推荐算法.该算法引入用户兴趣权重,建立用户-项目评价矩阵,通过聚类分析进行相似性计算,最终得到推荐结果.实验结果表明,本算法能有效地利用用户兴趣,提高推荐质量.
In view of the problem with insufficient of the users interest,data sparsity in filter algorithm system,a collaborative filtering recommendation algorithm based on users interest was proposed. The algorithm introduced the user interest weights,established evaluation user-item matrix,through cluster analysis,makes similarity calculation and finally got the recommended results. The experimental results showed that the algorithm could effectively use the interest of user,and improve the quality of recommendation.
出处
《郑州轻工业学院学报(自然科学版)》
CAS
2013年第5期47-49,共3页
Journal of Zhengzhou University of Light Industry:Natural Science
基金
国家自然科学基金项目(61201447)
关键词
协同过滤
用户兴趣相似度
个性化推荐
collaborative filtering
the user interest similarity
personalized recommendation