期刊文献+

高阶随机非线性系统的自适应状态反馈镇定

Adaptive State Feedback Stabilization for High-order Stochastic Nonlinear Systems
下载PDF
导出
摘要 本文针对一类高阶随机不确定非线性系统,其漂移项与扩散项依赖于所有状态,研究了此系统的自适应状态反馈镇定问题.通过选取恰当的Lyapunov函数,利用自适应增加幂积分方法、反推技术、参数分离原理和一些代数技巧设计参数,构造了一个光滑自适应控制器.所设计的控制器能保证闭环系统对任意初始值几乎处处存在惟一解,平衡点依概率全局稳定并且系统的状态几乎处处调节到零.仿真例子验证了控制方案的有效性. In this paper, the adaptive state feedback stabilization is studied for a class of high-order stochastic nonlinear systems in which drift and diffusion terms depend on all the states. We design parameters by choosing an appropriate Lyapunov function, the additive a power integrator scheme, the backstepping scheme, the parameter separation lemma and some flexible algebraic techniques. A smooth adaptive controller is constructed which guarantees that the closed-loop system has an almost surely unique solution for any initial state, the equilibrium of interest is globaly stable in probability, and the states can be regulated to origin almost surely. A simulation example is given to illustrate the effectiveness of the control scheme.
作者 秦孝艳
出处 《工程数学学报》 CSCD 北大核心 2013年第6期855-863,共9页 Chinese Journal of Engineering Mathematics
基金 国家自然科学基金(61104222) 山东省高等学校科技计划项目(J13LI03)~~
关键词 高阶随机非线性系统 自适应状态反馈 反推 依概率全局稳定 high-order stochastic nonlinear systems adaptive state feedback backsteppingglobally stable in probability
  • 相关文献

参考文献18

  • 1Pan Z, Basar T. Backstepping controller design for nonlinear stochastic systems under a risk-sensitive cost criterion [J]. SIAM Journal of Control and Optimization, 1999, 37(3): 957-995.
  • 2Krstic M,Dneng H. Stabilization of Nonlinear Uncertain Systems[M]. New York: Springer, 1998.
  • 3Dneng H, Krstic M, Williiams R J. Stabilization of stochastic nonlinear systems dnriven by noise of unknown covariance[J]. IEEE Transactions on Automatic Control, 2001,46(8): 1237-1253.
  • 4Wu Z J, Xie X J, Zhang S Y. Adnaptive backstepping controller design using stochastic small-gain theo-rem[J]. Automatica, 2007, 43(4): 608-620.
  • 5Wu Z J, Xie X J, Zhang S Y. Stochastic adnaptive backstepping controller dnesign by introducing dynamic signal andn changing supply function[J]. International Journal of Control, 2006, 79(12): 1635-1646.
  • 6Yu X, Xie X J. Output feedback regulation of stochastic nonlinear systems with stochastic iISS inverse dnynamics[J]. IEEE Transactions on Automatic Control, 2010, 55(2): 304-320.
  • 7Lin W, Qian C J. Adnding one power integrator: a tool for global stabilization of high-ordner lower-triangular systems[J]. System and Control Letters, 2000, 39(5): 339-351.
  • 8Lin W, Qian C J. Adnaptive regulation of high-order cascadne nonlinear systems: an adnding one power integrator approach [J]. System andn Control Letters, 2000,39(5): 353-364.
  • 9Qian C J, Lin W. Almost disturbance dnecoupling for a class of high-ordner nonlinear systems [J]. IEEE Transaction on Automatic Control, 2000,45(6): 1208-1214.
  • 10Qian C J. Global synthesis of nonlinear systems with uncontrollable linearization[D]. USA: Case Western Reserve University, 2001.

二级参考文献13

  • 1Marino R,Tomei P.Nonlinear control designgeometric,adaptive and robust[M].London:PrenticeHall,1995.
  • 2Krstic M,Kanellakopoulos I,Kokotovic P V.Nonlinear and adaptive control design[M].New York:John Wiley,1995.
  • 3Lin W,Qian C J.Adding one power integrator:A tool for global stabilization of high-order lower-triangular systems[J].System and Control Letters,2000,39(5):339-351.
  • 4Lin W,Qian C J.Adaptive regulation of high-order cascade nonlinear systems:An adding one power integrator approach[J].System and Control Letters,2000,39(5):353-364.
  • 5Qian C J,Lin W.Almost disturbance decoupling for a class of high-order nonlinear systems[J].IEEE Trans on Automatic Control,2000,45 (6):1209-1214.
  • 6Qian C J,Lin W.Non-Lipschitz continuous stabilizers for nonlinear systems with uncontrollable unstable linearization[J].System and Control Letters,2001,42(3):185-200.
  • 7Has'minskii R Z.Stochastic stability of differential equations[M].Rockville,Maryland:S & N International Publisher,1980.
  • 8Kushner H J.Stochastic stability and control[M].New York:Academic Press,1967.
  • 9Pan Z,Basar T.Backstepping controller design for nonlinear stochastic systems under a risk-sensitivecost criterion[J].SIAM J of Control and Optimization,1999,37(3):957-995.
  • 10Krstic M,Deng H.Stability of nonlinear uncertain systems[M].New York:Springer,1998.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部