期刊文献+

二阶椭圆特征值问题的一种新型混合元格式

A New Mixed Finite Element Scheme for Second Order Elliptic Eigenvalue Problem
下载PDF
导出
摘要 为满足实际问题对速度较低的正则性要求,本文建立了二阶椭圆特征值问题的一种新型混合元格式.由于速度空间只需满足平方可积性质,因此混合元配对变得简单易取.本文采用由分片常数速度元和分片线性压力元构成的协调有限元配对,得到椭圆特征值问题的最优误差估计.与传统的混合元配对格式比较,新方法只需较少的自由度便可达到同样的数值精度.最后,数值试验结果与理论分析相吻合,表明新方法的有效性. In this paper, we propose a new mixed finite element scheme to the second order elliptic eigenvalue problem based on the less regularity of the velocity in practice. Because in the new mixed finite element scheme, the velocity space satisfies square integrable properties, the choices of mixed element pairs become simple and easy. Based on this new scheme, we address corresponding conforming finite element pairs, which consists of piecewise constant element for velocity and piecewise linear element for pressure. Moreover, optimal error estimate of eigenvalues is obtained. Our method needs less degrees of freedom to obtain the same precision compared with classical mixed element schemes. Finally, we give numerical experiments to verify our theoretical results.
出处 《工程数学学报》 CSCD 北大核心 2013年第6期864-870,共7页 Chinese Journal of Engineering Mathematics
基金 国家自然科学基金(61163027) 新疆维吾尔自治区自然科学基金(2010211B04) 新疆科技厅特陪基金(201123117) 新疆大学自然科学基金(XY080102)~~
关键词 特征值问题 新的混合元格式 协调有限元配对 INF-SUP条件 误差估计 eigenvalue problem new mixed element scheme conforming finite-element pair inf-sup condition error estimate
  • 相关文献

参考文献6

  • 1Babuska I,Osborn J. Eigenvalue Problems[M]. North-Holland: Elsevier Science Publishers, 1991.
  • 2Lin Q, Lin J. Finite Element Methods: Accuracy and Improvement[M]. Beijing: Science Press, 2006.
  • 3Mercier B, Osborn J,Rappaz J, et al. Eigenvalue approximation by mixed and hybrid methods [J]. Mathematics of Computation, 1981, 36(154): 427-453.
  • 4Raviart P A, Thomas J M. A mixed finite element method for second order elliptic problems[C]// in Mathematical Aspects of Finite Element Methods, Vol. 606, Galligani I,Magenes E (eds), Lecture Notes in Mathematics, Berlin: Springer-Veriag, 1977: 292-315.
  • 5史峰,于佳平,李开泰.椭圆型方程的一种新型混合有限元格式[J].工程数学学报,2011,28(2):231-237. 被引量:43
  • 6Ciarlet P G. The Finite Element Method for Elliptic Problems[M]. North-Holland: Amsterdam, 1978.

二级参考文献7

  • 1Ciarlet P G. The Finite Element Method for Elliptic Problems[M]. Amsterdam: North-Holland, 1978.
  • 2Brezzi F, Fortin M. Mixed and Hybrid Finite Element Methods[M]. New York: Springer, 1991.
  • 3Chen Z X. Finite Element Methods and Their Applications[M]. Berlin, Heidelberg: Springer-Verlag, 2005.
  • 4Quarteroni A, Valli A. Numerical Approximation of Partial Differential Equations[M]. Berlin, Heidelberg: Springer-Verlag, 2008.
  • 5Fortin M. An analysis of the convergence of mixed finite element methods[J]. RAIRO Analyse Numerique, 1977, 11(4): 341-354.
  • 6Layton W, Tobiska L. A two-level method with backtraking for the Navier-Stokes equations[J]. SIAM Journal on Numerical Analysis, 1998, 35(5): 2035-2054.
  • 7Li J, He Y N. A stabilized finite element method based on two local Gauss integrations for the Stokes equations[J]. Journal of Computational and Applied Mathematics, 2008, 214(1): 58-65.

共引文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部