摘要
图G的条件匹配排除数是最少的边的数量,使得G中存在一个这样数量的边子集F,从G中删除F中的边后形成的图既没有孤立点,也没有完美匹配或几乎完美匹配.任何一个这样的边集称为G的一个最优条件匹配排除集.条件匹配排除数是衡量网络在边故障情况下的鲁棒性的参数之一.星图和泡形图是用于大型多处理器系统的两类广受关注的互连网络.本文研究了这两类图相结合构建的一类图,给出了这类图的所有最优条件匹配排除集.
The conditional matching preclusion number of a graph is the minimum number of edges, whose deletion results in a graph with no isolated vertices that has neither perfect matchings nor almost-perfect matchings. Any such optimal set is called an optimally conditional matching preclusion set. The conditional matching preclusion number is one of the parameters to measure the robustness of interconnection networks in the event of edge failure. The star graph and the bubble-sort graph are two most attractive interconnection networks of large scale multiprocessor systems. In this paper, we investigate a class of graphs which are constructed by combining the star graph with the bubble-sort graph, and give all the optimally conditional matching preclusion sets for this class of graphs.
出处
《工程数学学报》
CSCD
北大核心
2013年第6期901-910,共10页
Chinese Journal of Engineering Mathematics
基金
国家自然科学基金(71171189
61070229
61370001)
教育部博士点基金(20111401110005)~~
关键词
完美匹配
CAYLEY图
条件匹配排除
星图
泡形图
互连网络
perfect matchings
Cayley graphs
conditional matching preclusion
star graphbubble-sort graph
interconnection networks