期刊文献+

无穷小概念教学的5个强化

Five Reinforcements on Teaching Concepts of Infinitesimal
下载PDF
导出
摘要 在研究"无穷小教学问题"的基础上,提出了"无穷小"教学的5个"强化":在概念产生过程强化概念;从几何的角度强化概念;在后续的学习中强化概念;在无穷小的比较中强化概念;在符号"o"和"O"的运算中强化概念. All forms of function limit can be expressed by infinitesimals, and the concept of infinitesimal and function limit are actually two equivalent concepts. For this reason, we can eliminate the character of limit and transform a function question into a question of "number" by using an infinitesimal to express an function limit, which makes the question much easier and more specific, and get twice the result with half the effort. However, the concept of "infinitesimal" is a highly abstract math concept, which is involved with both "number" and "variation trend" that makes teaching and learning more difficult, consequently how to solve the teaching problem of infinitesimal is of great importance. Five "reinforcements" are proposed on the basis of the investigating of "the teaching probiem of infinitesimal" : reinforcing the concept during the generation of it ; reinforcing the concept from the perspective of geometry ; reinforcing the concept in the following study; reinforcing the concept in the comparison between two infinitesimals; and reinforcing the concept in the operation of "o" and "O."
作者 向长福
出处 《曲靖师范学院学报》 2013年第6期14-17,128,共5页 Journal of Qujing Normal University
关键词 数学教学 无穷小 强化 极限 infinitesimal emphasis teaching 1 imit
  • 相关文献

参考文献5

  • 1同济大学数学系.高等数学(下)[M].北京:高等教育出版社,2008.
  • 2刘玉链,傅沛仁.数学分析讲义(第5版)[M].北京:高等教育出版社,2003:326-327.
  • 3同济大学数学系.高等数学(第五版)[M].北京:高等教育出版社,2008:43-45.
  • 4华东师范大学数学系.数学分析(第3版上册)[M].北京:高等教育出版社,2009:60-62.
  • 5费定军,周学圣,译.吉米多维奇数学分析习题集题解[M].济南:山东科技出版社,2004:360-361.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部